import gradio from transformers import pipeline classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") # sequence_to_classify = "one day I will see the world" # candidate_labels = ['travel', 'cooking', 'dancing'] # CATEGORIES = ['doc_type.jur', 'doc_type.Spec', 'doc_type.ZDF', 'doc_type.Publ', # 'doc_type.Scheme', 'content_type.Alt', 'content_type.Krypto', # 'content_type.Karte', 'content_type.Banking', 'content_type.Reg', # 'content_type.Konto'] categories = [ "Legal", "Specification", "Facts and Figures", "Publication", "Payment Scheme", "Alternative Payment Systems", "Crypto Payments", "Card Payments", "Banking", "Regulations", "Account Payments" ] def clf_text(txt: str): res = classifier(txt, categories, multi_label=True) items = sorted(zip(res["labels"], res["scores"]), key=lambda tpl: tpl[1], reverse=True) # d = dict(zip(res["labels"], res["scores"])) # output = [f"{lbl}:\t{score}" for lbl, score in items] # return "\n".join(output) return list(items) # classifier(sequence_to_classify, candidate_labels) #{'labels': ['travel', 'dancing', 'cooking'], # 'scores': [0.9938651323318481, 0.0032737774308770895, 0.002861034357920289], # 'sequence': 'one day I will see the world'} def my_inference_function(name): return "Hello " + name + "!" gradio_interface = gradio.Interface( # fn = my_inference_function, fn = clf_text, inputs = "text", outputs = gradio.JSON() ) gradio_interface.launch()