YaminiVJ's picture
Upload 10 files
8780fb9 verified
"""
FastAPI routes for resume review functionality
"""
from fastapi import APIRouter, UploadFile, File, Form, HTTPException
from fastapi.responses import JSONResponse
from app.embedding import CorrectedResumeJobMatcher
from app.supabase import supabase_service
from app.config import settings
import logging
import os
logger = logging.getLogger(__name__)
router = APIRouter()
@router.post("/match", response_model=dict)
async def match_resume_job(
file: UploadFile = File(..., description="PDF resume file"),
job_description: str = Form(..., description="Job description text", min_length=50)
):
"""
Enhanced resume-job matching using the CorrectedResumeJobMatcher
Args:
file: PDF file upload
job_description: Job description as form data
Returns:
dict: Comprehensive matching results with detailed analysis
"""
try:
# Validate file type
if file.content_type not in settings.ALLOWED_FILE_TYPES:
raise HTTPException(
status_code=400,
detail=f"Invalid file type. Only PDF files are allowed."
)
# Check file size
file_content = await file.read()
if len(file_content) > settings.MAX_FILE_SIZE:
raise HTTPException(
status_code=400,
detail=f"File size exceeds maximum allowed size of {settings.MAX_FILE_SIZE/1024/1024}MB"
)
# Initialize the enhanced matcher
groq_api_key = os.getenv("GROQ_API_KEY")
cohere_api_key = os.getenv("COHERE_API_KEY")
matcher = CorrectedResumeJobMatcher(
groq_api_key=groq_api_key,
cohere_api_key=cohere_api_key,
resume_bert_model=None # Auto-select best model
)
# Perform the matching analysis
result = matcher.match(file_content, job_description)
# Print detailed analysis to terminal
print("\n" + "="*80)
print("πŸ” API REQUEST ANALYSIS RESULTS")
print("="*80)
final_score = result["final_similarity_score"]
final_percentage = result["final_similarity_percentage"]
category = result["similarity_category"]
print(f"\n🎯 FINAL MATCH SCORE: {final_score:.4f} ({final_percentage:.2f}%)")
print(f"πŸ“Š CATEGORY: {category}")
print(f"πŸ” CONFIDENCE: {result['confidence']:.3f}")
print(f"⚠️ ANOMALY: {result['anomaly']}")
# Component scores
print(f"\nπŸ“Š COMPONENT SCORES:")
print(f" β€’ Semantic Similarity: {result['semantic_score']:.3f} ({result['semantic_score']*100:.1f}%)")
print(f" β€’ Skills Matching: {result['skills_score']:.3f} ({result['skills_score']*100:.1f}%)")
print(f" β€’ Enhanced Skills: {result['enhanced_skills_score']:.3f} ({result['enhanced_skills_score']*100:.1f}%)")
print(f" β€’ Resume-BERT: {result['resume_bert_score']:.3f} ({result['resume_bert_score']*100:.1f}%)")
print(f" β€’ LLM Assessment: {result['llm_score']:.1f}/100")
# LLM Details
if result.get('llm_details'):
llm_details = result['llm_details']
print(f"\n🧠 LLM ANALYSIS:")
print(f" β€’ API Used: {llm_details.get('api_used', 'N/A')}")
print(f" β€’ Response Time: {llm_details.get('response_time', 0):.2f}s")
print(f" β€’ Compatibility: {llm_details.get('compatibility_score', 0)}/100")
if llm_details.get('strengths'):
print(f" β€’ Key Strengths: {len(llm_details['strengths'])} identified")
if llm_details.get('gaps'):
print(f" β€’ Areas for Improvement: {len(llm_details['gaps'])} identified")
if llm_details.get('recommendations'):
print(f" β€’ Recommendations: {len(llm_details['recommendations'])} provided")
# Skills Analysis
if result.get('skills_analysis'):
skills_analysis = result['skills_analysis']
print(f"\nπŸ”§ SKILLS ANALYSIS:")
print(f" β€’ Coverage: {skills_analysis['coverage_percentage']*100:.1f}%")
print(f" β€’ Direct Matches: {skills_analysis['direct_match_count']}/{skills_analysis['total_job_skills']}")
print(f" β€’ Missing Skills: {len(skills_analysis['missing_skills'])}")
print(f" β€’ Critical Skills Missing: {len(skills_analysis['critical_skills_missing'])}")
# Model Info
if result.get('model_info'):
model_info = result['model_info']
print(f"\nπŸ€– MODEL INFO:")
print(f" β€’ Primary Model: {model_info.get('primary_semantic_model', 'N/A')}")
print(f" β€’ Resume Model: {model_info.get('resume_specific_model', 'N/A')}")
print(f" β€’ Total Models: {model_info.get('total_models_loaded', 0)}")
print("\n" + "="*80)
# Store results in database if Supabase is configured
try:
# Extract resume text for storage
resume_text = matcher.pdf_extractor.extract_text(file_content)
# Create a summary for storage
feedback = f"Match Score: {result['final_similarity_percentage']:.1f}% - {result['similarity_category']}"
# Store in database
await supabase_service.insert_resume_review(
resume_text=resume_text,
job_description=job_description,
match_score=result['final_similarity_percentage'],
feedback=feedback
)
except Exception as e:
logger.warning(f"Failed to store results in database: {str(e)}")
# Continue without failing the request
return result
except Exception as e:
logger.error(f"Resume matching failed: {str(e)}")
raise HTTPException(
status_code=500,
detail=f"Failed to process resume matching: {str(e)}"
)
@router.get("/reviews")
async def get_recent_reviews():
"""
Get recent resume reviews
Returns:
list: Recent resume reviews
"""
try:
reviews = await supabase_service.get_resume_reviews(limit=10)
return {"reviews": reviews}
except Exception as e:
logger.error(f"Error retrieving reviews: {str(e)}")
raise HTTPException(
status_code=500,
detail="Failed to retrieve reviews"
)
@router.get("/health")
async def health_check():
"""
Health check for the review service
Returns:
dict: Health status
"""
return {
"status": "healthy",
"embedding_model": settings.EMBEDDING_MODEL_NAME,
"llm_model": settings.LLM_MODEL_NAME,
"supabase_connected": supabase_service.client is not None
}