Spaces:
Running
Running
import streamlit as st | |
import cv2 | |
import numpy as np | |
import tempfile | |
import os | |
# import pytesseract | |
import easyocr | |
# from langchain.document_loaders.image import UnstructuredImageLoader | |
# from langchain_community.document_loaders import UnstructuredImageLoader | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import LLMChain | |
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace | |
# Set Hugging Face API keys | |
os.environ["HUGGINGFACEHUB_API_KEY"] = os.getenv("HF") | |
os.environ["HF_TOKEN"] = os.getenv("HF") | |
st.set_page_config( | |
page_title="MediAssist - Prescription Analyzer", | |
layout="wide", | |
page_icon="💊" | |
) | |
st.sidebar.title("💊 MediAssist") | |
st.sidebar.markdown("Analyze prescriptions with ease using AI") | |
st.sidebar.markdown("---") | |
st.sidebar.markdown("🔗 **Connect with me:**") | |
st.sidebar.markdown(""" | |
<div style='display: flex; gap: 10px;'> | |
<a href="https://github.com/Yashvj22" target="_blank"> | |
<img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white" style="height:30px;"> | |
</a> | |
<a href="https://www.linkedin.com/in/yash-jadhav-454b0a237/" target="_blank"> | |
<img src="https://img.shields.io/badge/LinkedIn-0A66C2?style=for-the-badge&logo=linkedin&logoColor=white" style="height:30px;"> | |
</a> | |
</div> | |
""", unsafe_allow_html=True) | |
st.sidebar.markdown("---") | |
st.markdown(""" | |
<h1 style='text-align: center; color: #4A90E2;'>🧠 MediAssist</h1> | |
<h3 style='text-align: center;'>Prescription Analyzer using AI and OCR</h3> | |
<p style='text-align: center;'>Upload a doctor's prescription image, and MediAssist will extract, translate, and explain it for you.</p> | |
<br> | |
""", unsafe_allow_html=True) | |
uploaded_file = st.file_uploader("📤 Upload Prescription Image (JPG/PNG)", type=["jpg", "jpeg", "png"]) | |
if uploaded_file: | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: | |
temp_file.write(uploaded_file.read()) | |
orig_path = temp_file.name | |
# Step 1: Read and preprocess image | |
image = cv2.imread(orig_path) | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
_, binary_inv = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY_INV) | |
kernel = np.ones((3, 3), np.uint8) | |
dilated = cv2.dilate(binary_inv, kernel, iterations=1) | |
reader = easyocr.Reader(['en']) | |
text_list = reader.readtext(dilated, detail=0) | |
text = "\n".join(text_list) | |
# text = pytesseract.image_to_string(dilated) | |
# Save preprocessed image for OCR | |
# dilated_path = orig_path.replace(".png", "_dilated.png") | |
# cv2.imwrite(dilated_path, dilated) | |
# loader = UnstructuredImageLoader(dilated_path) | |
# documents = loader.load() | |
# extracted_text = "\n".join([doc.page_content for doc in documents]) | |
template = """ | |
You are a helpful assistant. Here is a prescription text extracted from an image: | |
{prescription_text} | |
Please summarize the key medicine names and instructions in bullet points. | |
""" | |
prompt = PromptTemplate(input_variables=["prescription_text"], template=template) | |
llm_model = HuggingFaceEndpoint( | |
repo_id="mistralai/Mistral-7B-Instruct-v0.3", | |
provider="novita", | |
temperature=0.6, | |
max_new_tokens=300, | |
task="conversational" | |
) | |
model = ChatHuggingFace( | |
llm=llm_model, | |
repo_id="mistralai/Mistral-7B-Instruct-v0.3", | |
provider="novita", | |
temperature=0.6, | |
max_new_tokens=300, | |
task="conversational" | |
) | |
chain = LLMChain(llm=model, prompt=prompt) | |
col1, col2 = st.columns([1, 2]) | |
with col1: | |
st.image(dilated, caption="Preprocessed Prescription", channels="GRAY", use_container_width=True) | |
with col2: | |
st.success("✅ Prescription Uploaded & Preprocessed Successfully") | |
st.markdown("### 📜 Extracted Text") | |
st.code(text) | |
# st.code(extracted_text) | |
if st.button("🔍 Analyze Text"): | |
with st.spinner("Analyzing..."): | |
response = chain.run(prescription_text=text) | |
# response = chain.run(prescription_text=extracted_text) | |
st.success(response) | |
# Cleanup temp files | |
os.remove(orig_path) | |
os.remove(dilated_path) | |
else: | |
st.markdown("<center><i>Upload a prescription image to begin analysis.</i></center>", unsafe_allow_html=True) | |
# st.markdown("### 🌐 Translated Text") | |
# st.code("पेरासिटामोल 500 मिलीग्राम\nभोजन के बाद दिन में दो बार 1 गोली लें", language='text') | |
# st.markdown("### ⏱️ Tablet Timing & Instructions") | |
# st.info("- Morning after breakfast\n- Night after dinner\n- Take with water\n- Do not exceed 2 tablets in 24 hours") | |
# st.markdown("### ⚠️ Possible Side Effects") | |
# st.warning("- Nausea\n- Dizziness\n- Liver damage (on overdose)") | |
# os.remove(temp_path) | |
# os.remove(orig_path) | |
# os.remove(dilated_path) |