from torch import nn, Tensor import open_clip from ..utils import ConvRefine, ConvUpsample from ..utils import _get_norm_layer, _get_activation mobileclip_names_and_weights = { "MobileCLIP-S1": ["datacompdr"], "MobileCLIP-S2": ["datacompdr"], } refiner_channels = { "MobileCLIP-S1": 1024, "MobileCLIP-S2": 1280, } refiner_groups = { "MobileCLIP-S1": 2, "MobileCLIP-S2": 2, } class MobileCLIP(nn.Module): def __init__( self, model_name: str, weight_name: str, block_size: int = 16, norm: str = "none", act: str = "none" ) -> None: super().__init__() assert model_name in mobileclip_names_and_weights, f"Model name should be one of {list(mobileclip_names_and_weights.keys())}, but got {model_name}." assert weight_name in mobileclip_names_and_weights[model_name], f"Pretrained should be one of {mobileclip_names_and_weights[model_name]}, but got {weight_name}." assert block_size in [32, 16, 8], f"block_size should be one of [32, 16, 8], got {block_size}" self.model_name, self.weight_name = model_name, weight_name self.block_size = block_size # model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False).visual self.stem = model.trunk.stem self.stages = model.trunk.stages self.depth = len(model.trunk.stages) self.final_conv = model.trunk.final_conv self.in_features, self.out_features = model.trunk.head.fc.in_features, model.trunk.head.fc.out_features # refine_block = LightConvRefine if model_name == "MobileCLIP-S1" else ConvRefine # upsample_block = LightConvUpsample if model_name == "MobileCLIP-S1" else ConvUpsample if norm == "bn": norm_layer = nn.BatchNorm2d elif norm == "ln": norm_layer = nn.LayerNorm else: norm_layer = _get_norm_layer(model) if act == "relu": activation = nn.ReLU(inplace=True) elif act == "gelu": activation = nn.GELU() else: activation = _get_activation(model) if block_size == 32: self.refiner = ConvRefine( in_channels=self.in_features, out_channels=self.in_features, norm_layer=norm_layer, activation=activation, groups=refiner_groups[model_name], ) elif block_size == 16: self.refiner = ConvUpsample( in_channels=self.in_features, out_channels=self.in_features, norm_layer=norm_layer, activation=activation, groups=refiner_groups[self.model_name], ) else: # block_size == 8 self.refiner = nn.Sequential( ConvUpsample( in_channels=self.in_features, out_channels=self.in_features, norm_layer=norm_layer, activation=activation, groups=refiner_groups[self.model_name], ), ConvUpsample( in_channels=self.in_features, out_channels=self.in_features, norm_layer=norm_layer, activation=activation, groups=refiner_groups[self.model_name], ), ) def forward(self, x: Tensor) -> Tensor: x = self.stem(x) for idx in range(self.depth): x = self.stages[idx](x) x = self.final_conv(x) x = self.refiner(x) return x def _mobileclip( model_name: str, weight_name: str, block_size: int = 16, norm: str = "none", act: str = "none" ) -> MobileCLIP: model = MobileCLIP( model_name=model_name, weight_name=weight_name, block_size=block_size, norm=norm, act=act ) return model