Spaces:
Running
on
Zero
Running
on
Zero
File size: 36,378 Bytes
cf2f35c 75e7c94 cf2f35c 4599acf cf2f35c 75e7c94 cf2f35c 75e7c94 cf2f35c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 |
import torch
import psutil
import argparse
import gradio as gr
import os
from diffusers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import load_image
from transformers import AutoTokenizer, Wav2Vec2Model, Wav2Vec2Processor
from omegaconf import OmegaConf
from wan.models.cache_utils import get_teacache_coefficients
from wan.models.wan_fantasy_transformer3d_1B import WanTransformer3DFantasyModel
from wan.models.wan_text_encoder import WanT5EncoderModel
from wan.models.wan_vae import AutoencoderKLWan
from wan.models.wan_image_encoder import CLIPModel
from wan.pipeline.wan_inference_long_pipeline import WanI2VTalkingInferenceLongPipeline
from wan.utils.fp8_optimization import replace_parameters_by_name, convert_weight_dtype_wrapper, convert_model_weight_to_float8
from wan.utils.utils import get_image_to_video_latent, save_videos_grid
import numpy as np
import librosa
import datetime
import random
import math
import subprocess
from moviepy.editor import VideoFileClip
from huggingface_hub import snapshot_download
import shutil
import spaces
try:
from audio_separator.separator import Separator
except:
print("Unable to use vocal separation feature. Please install audio-separator[gpu].")
if torch.cuda.is_available():
device = "cuda"
if torch.cuda.get_device_capability()[0] >= 8:
dtype = torch.bfloat16
else:
dtype = torch.float16
else:
device = "cpu"
dtype = torch.float32
def filter_kwargs(cls, kwargs):
import inspect
sig = inspect.signature(cls.__init__)
valid_params = set(sig.parameters.keys()) - {'self', 'cls'}
filtered_kwargs = {k: v for k, v in kwargs.items() if k in valid_params}
return filtered_kwargs
def load_transformer_model(model_version):
"""
根据选择的模型版本加载对应的transformer模型
Args:
model_version (str): 模型版本,"square" 或 "rec_vec"
Returns:
WanTransformer3DFantasyModel: 加载的transformer模型
"""
global transformer3d
if model_version == "square":
transformer_path = os.path.join(repo_root, "StableAvatar-1.3B", "transformer3d-square.pt")
elif model_version == "rec_vec":
transformer_path = os.path.join(repo_root, "StableAvatar-1.3B", "transformer3d-rec-vec.pt")
else:
# 默认使用square版本
transformer_path = os.path.join(repo_root, "StableAvatar-1.3B", "transformer3d-square.pt")
print(f"正在加载模型: {transformer_path}")
if os.path.exists(transformer_path):
state_dict = torch.load(transformer_path, map_location="cpu")
state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict
m, u = transformer3d.load_state_dict(state_dict, strict=False)
print(f"模型加载成功: {transformer_path}")
print(f"Missing keys: {len(m)}; Unexpected keys: {len(u)}")
return transformer3d
else:
print(f"错误:模型文件不存在: {transformer_path}")
return None
REPO_ID = "FrancisRing/StableAvatar"
repo_root = snapshot_download(
repo_id=REPO_ID,
allow_patterns=[
"StableAvatar-1.3B/*",
"Wan2.1-Fun-V1.1-1.3B-InP/*",
"wav2vec2-base-960h/*",
"assets/**",
"Kim_Vocal_2.onnx",
],
)
pretrained_model_name_or_path = os.path.join(repo_root, "Wan2.1-Fun-V1.1-1.3B-InP")
pretrained_wav2vec_path = os.path.join(repo_root, "wav2vec2-base-960h")
# 人声分离 onnx
audio_separator_model_file = os.path.join(repo_root, "Kim_Vocal_2.onnx")
# model_path = "/datadrive/stableavatar/checkpoints"
# pretrained_model_name_or_path = f"{model_path}/Wan2.1-Fun-V1.1-1.3B-InP"
# pretrained_wav2vec_path = f"{model_path}/wav2vec2-base-960h"
# transformer_path = f"{model_path}/StableAvatar-1.3B/transformer3d-square.pt"
config = OmegaConf.load("deepspeed_config/wan2.1/wan_civitai.yaml")
sampler_name = "Flow"
clip_sample_n_frames = 81
tokenizer = AutoTokenizer.from_pretrained(os.path.join(pretrained_model_name_or_path, config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer')), )
text_encoder = WanT5EncoderModel.from_pretrained(
os.path.join(pretrained_model_name_or_path, config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder')),
additional_kwargs=OmegaConf.to_container(config['text_encoder_kwargs']),
low_cpu_mem_usage=True,
torch_dtype=dtype,
)
text_encoder = text_encoder.eval()
vae = AutoencoderKLWan.from_pretrained(
os.path.join(pretrained_model_name_or_path, config['vae_kwargs'].get('vae_subpath', 'vae')),
additional_kwargs=OmegaConf.to_container(config['vae_kwargs']),
)
wav2vec_processor = Wav2Vec2Processor.from_pretrained(pretrained_wav2vec_path)
wav2vec = Wav2Vec2Model.from_pretrained(pretrained_wav2vec_path).to("cpu")
clip_image_encoder = CLIPModel.from_pretrained(os.path.join(pretrained_model_name_or_path, config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder')), )
clip_image_encoder = clip_image_encoder.eval()
transformer3d = WanTransformer3DFantasyModel.from_pretrained(
os.path.join(pretrained_model_name_or_path, config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')),
transformer_additional_kwargs=OmegaConf.to_container(config['transformer_additional_kwargs']),
low_cpu_mem_usage=False,
torch_dtype=dtype,
)
# 默认加载square版本模型
load_transformer_model("square")
Choosen_Scheduler = scheduler_dict = {
"Flow": FlowMatchEulerDiscreteScheduler,
}[sampler_name]
scheduler = Choosen_Scheduler(
**filter_kwargs(Choosen_Scheduler, OmegaConf.to_container(config['scheduler_kwargs']))
)
pipeline = WanI2VTalkingInferenceLongPipeline(
tokenizer=tokenizer,
text_encoder=text_encoder,
vae=vae,
transformer=transformer3d,
clip_image_encoder=clip_image_encoder,
scheduler=scheduler,
wav2vec_processor=wav2vec_processor,
wav2vec=wav2vec,
)
@spaces.GPU(duration=120)
def generate(
GPU_memory_mode,
teacache_threshold,
num_skip_start_steps,
image_path,
audio_path,
prompt,
negative_prompt,
width,
height,
guidance_scale,
num_inference_steps,
text_guide_scale,
audio_guide_scale,
motion_frame,
fps,
overlap_window_length,
seed_param,
overlapping_weight_scheme,
progress=gr.Progress(track_tqdm=True),
):
global pipeline, transformer3d
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
if seed_param<0:
seed = random.randint(0, np.iinfo(np.int32).max)
else:
seed = seed_param
if GPU_memory_mode == "sequential_cpu_offload":
replace_parameters_by_name(transformer3d, ["modulation", ], device=device)
transformer3d.freqs = transformer3d.freqs.to(device=device)
pipeline.enable_sequential_cpu_offload(device=device)
elif GPU_memory_mode == "model_cpu_offload_and_qfloat8":
convert_model_weight_to_float8(transformer3d, exclude_module_name=["modulation", ])
convert_weight_dtype_wrapper(transformer3d, dtype)
pipeline.enable_model_cpu_offload(device=device)
elif GPU_memory_mode == "model_cpu_offload":
pipeline.enable_model_cpu_offload(device=device)
else:
pipeline.to(device=device)
if teacache_threshold > 0:
coefficients = get_teacache_coefficients(pretrained_model_name_or_path)
pipeline.transformer.enable_teacache(
coefficients,
num_inference_steps,
teacache_threshold,
num_skip_start_steps=num_skip_start_steps,
)
with torch.no_grad():
video_length = int((clip_sample_n_frames - 1) // vae.config.temporal_compression_ratio * vae.config.temporal_compression_ratio) + 1 if clip_sample_n_frames != 1 else 1
input_video, input_video_mask, clip_image = get_image_to_video_latent(image_path, None, video_length=video_length, sample_size=[height, width])
sr = 16000
vocal_input, sample_rate = librosa.load(audio_path, sr=sr)
sample = pipeline(
prompt,
num_frames=video_length,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
generator=torch.Generator().manual_seed(seed),
num_inference_steps=num_inference_steps,
video=input_video,
mask_video=input_video_mask,
clip_image=clip_image,
text_guide_scale=text_guide_scale,
audio_guide_scale=audio_guide_scale,
vocal_input_values=vocal_input,
motion_frame=motion_frame,
fps=fps,
sr=sr,
cond_file_path=image_path,
overlap_window_length=overlap_window_length,
seed=seed,
overlapping_weight_scheme=overlapping_weight_scheme,
).videos
os.makedirs("outputs", exist_ok=True)
video_path = os.path.join("outputs", f"{timestamp}.mp4")
save_videos_grid(sample, video_path, fps=fps)
output_video_with_audio = os.path.join("outputs", f"{timestamp}_audio.mp4")
subprocess.run([
"ffmpeg", "-y", "-loglevel", "quiet", "-i", video_path, "-i", audio_path,
"-c:v", "copy", "-c:a", "aac", "-strict", "experimental",
output_video_with_audio
], check=True)
return output_video_with_audio, seed, f"Generated outputs/{timestamp}.mp4 / 已生成outputs/{timestamp}.mp4"
def exchange_width_height(width, height):
return height, width, "✅ Width and Height Swapped / 宽高交换完毕"
def adjust_width_height(image):
image = load_image(image)
width, height = image.size
original_area = width * height
default_area = 512*512
ratio = math.sqrt(original_area / default_area)
width = width / ratio // 16 * 16
height = height / ratio // 16 * 16
return int(width), int(height), "✅ Adjusted Size Based on Image / 根据图片调整宽高"
def audio_extractor(video_path):
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
os.makedirs("outputs", exist_ok=True) # 确保目录存在
out_wav = os.path.abspath(os.path.join("outputs", f"{timestamp}.wav"))
video = VideoFileClip(video_path)
audio = video.audio
audio.write_audiofile(out_wav, codec="pcm_s16le")
return out_wav, f"Generated {out_wav} / 已生成 {out_wav}", out_wav # ← 第3个返回给 gr.File
def vocal_separation(audio_path):
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
os.makedirs("outputs", exist_ok=True)
# audio_separator_model_file = "checkpoints/Kim_Vocal_2.onnx"
audio_separator = Separator(
output_dir=os.path.abspath(os.path.join("outputs", timestamp)),
output_single_stem="vocals",
model_file_dir=os.path.dirname(audio_separator_model_file),
)
audio_separator.load_model(os.path.basename(audio_separator_model_file))
assert audio_separator.model_instance is not None, "Fail to load audio separate model."
outputs = audio_separator.separate(audio_path)
vocal_audio_file = os.path.join(audio_separator.output_dir, outputs[0])
destination_file = os.path.abspath(os.path.join("outputs", f"{timestamp}.wav"))
shutil.copy(vocal_audio_file, destination_file)
os.remove(vocal_audio_file)
return destination_file, f"Generated {destination_file} / 已生成 {destination_file}", destination_file
def update_language(language):
if language == "English":
return {
GPU_memory_mode: gr.Dropdown(label="GPU Memory Mode", info="Normal uses 25G VRAM, model_cpu_offload uses 13G VRAM"),
teacache_threshold: gr.Slider(label="TeaCache Threshold", info="Recommended 0.1, 0 disables TeaCache acceleration"),
num_skip_start_steps: gr.Slider(label="Skip Start Steps", info="Recommended 5"),
model_version: gr.Dropdown(label="Model Version", choices=["square", "rec_vec"], value="square"),
image_path: gr.Image(label="Upload Image"),
audio_path: gr.Audio(label="Upload Audio"),
prompt: gr.Textbox(label="Prompt"),
negative_prompt: gr.Textbox(label="Negative Prompt"),
generate_button: gr.Button("🎬 Start Generation"),
width: gr.Slider(label="Width"),
height: gr.Slider(label="Height"),
exchange_button: gr.Button("🔄 Swap Width/Height"),
adjust_button: gr.Button("Adjust Size Based on Image"),
guidance_scale: gr.Slider(label="Guidance Scale"),
num_inference_steps: gr.Slider(label="Sampling Steps (Recommended 50)"),
text_guide_scale: gr.Slider(label="Text Guidance Scale"),
audio_guide_scale: gr.Slider(label="Audio Guidance Scale"),
motion_frame: gr.Slider(label="Motion Frame"),
fps: gr.Slider(label="FPS"),
overlap_window_length: gr.Slider(label="Overlap Window Length"),
seed_param: gr.Number(label="Seed (positive integer, -1 for random)"),
overlapping_weight_scheme: gr.Dropdown(label="Overlapping Weight Scheme", choices=["uniform", "log"], value="uniform"),
info: gr.Textbox(label="Status"),
video_output: gr.Video(label="Generated Result"),
seed_output: gr.Textbox(label="Seed"),
video_path: gr.Video(label="Upload Video"),
extractor_button: gr.Button("🎬 Start Extraction"),
info2: gr.Textbox(label="Status"),
audio_output: gr.Audio(label="Generated Result"),
audio_path3: gr.Audio(label="Upload Audio"),
separation_button: gr.Button("🎬 Start Separation"),
info3: gr.Textbox(label="Status"),
audio_output3: gr.Audio(label="Generated Result"),
example_title: gr.Markdown(value="### Select the following example cases for testing:"),
example1_label: gr.Markdown(value="**Example 1**"),
example2_label: gr.Markdown(value="**Example 2**"),
example3_label: gr.Markdown(value="**Example 3**"),
example4_label: gr.Markdown(value="**Example 4**"),
example5_label: gr.Markdown(value="**Example 5**"),
example1_btn: gr.Button("🚀 Use Example 1", variant="secondary"),
example2_btn: gr.Button("🚀 Use Example 2", variant="secondary"),
example3_btn: gr.Button("🚀 Use Example 3", variant="secondary"),
example4_btn: gr.Button("🚀 Use Example 4", variant="secondary"),
example5_btn: gr.Button("🚀 Use Example 5", variant="secondary"),
parameter_settings_title: gr.Accordion(label="Parameter Settings", open=True),
example_cases_title: gr.Accordion(label="Example Cases", open=True),
stableavatar_title: gr.TabItem(label="StableAvatar"),
audio_extraction_title: gr.TabItem(label="Audio Extraction"),
vocal_separation_title: gr.TabItem(label="Vocal Separation")
}
else:
return {
GPU_memory_mode: gr.Dropdown(label="显存模式", info="Normal占用25G显存,model_cpu_offload占用13G显存"),
teacache_threshold: gr.Slider(label="teacache threshold", info="推荐参数0.1,0为禁用teacache加速"),
num_skip_start_steps: gr.Slider(label="跳过开始步数", info="推荐参数5"),
model_version: gr.Dropdown(label="模型版本", choices=["square", "rec_vec"], value="square"),
image_path: gr.Image(label="上传图片"),
audio_path: gr.Audio(label="上传音频"),
prompt: gr.Textbox(label="提示词"),
negative_prompt: gr.Textbox(label="负面提示词"),
generate_button: gr.Button("🎬 开始生成"),
width: gr.Slider(label="宽度"),
height: gr.Slider(label="高度"),
exchange_button: gr.Button("🔄 交换宽高"),
adjust_button: gr.Button("根据图片调整宽高"),
guidance_scale: gr.Slider(label="guidance scale"),
num_inference_steps: gr.Slider(label="采样步数(推荐50步)", minimum=1, maximum=100, step=1, value=50),
text_guide_scale: gr.Slider(label="text guidance scale"),
audio_guide_scale: gr.Slider(label="audio guidance scale"),
motion_frame: gr.Slider(label="motion frame"),
fps: gr.Slider(label="帧率"),
overlap_window_length: gr.Slider(label="overlap window length"),
seed_param: gr.Number(label="种子,请输入正整数,-1为随机"),
overlapping_weight_scheme: gr.Dropdown(label="Overlapping Weight Scheme", choices=["uniform", "log"], value="uniform"),
info: gr.Textbox(label="提示信息"),
video_output: gr.Video(label="生成结果"),
seed_output: gr.Textbox(label="种子"),
video_path: gr.Video(label="上传视频"),
extractor_button: gr.Button("🎬 开始提取"),
info2: gr.Textbox(label="提示信息"),
audio_output: gr.Audio(label="生成结果"),
audio_path3: gr.Audio(label="上传音频"),
separation_button: gr.Button("🎬 开始分离"),
info3: gr.Textbox(label="提示信息"),
audio_output3: gr.Audio(label="生成结果"),
example_title: gr.Markdown(value="### 选择以下示例案例进行测试:"),
example1_label: gr.Markdown(value="**示例 1**"),
example2_label: gr.Markdown(value="**示例 2**"),
example3_label: gr.Markdown(value="**示例 3**"),
example4_label: gr.Markdown(value="**示例 4**"),
example5_label: gr.Markdown(value="**示例 5**"),
example1_btn: gr.Button("🚀 使用示例 1", variant="secondary"),
example2_btn: gr.Button("🚀 使用示例 2", variant="secondary"),
example3_btn: gr.Button("🚀 使用示例 3", variant="secondary"),
example4_btn: gr.Button("🚀 使用示例 4", variant="secondary"),
example5_btn: gr.Button("🚀 使用示例 5", variant="secondary"),
parameter_settings_title: gr.Accordion(label="参数设置", open=True),
example_cases_title: gr.Accordion(label="示例案例", open=True),
stableavatar_title: gr.TabItem(label="StableAvatar"),
audio_extraction_title: gr.TabItem(label="音频提取"),
vocal_separation_title: gr.TabItem(label="人声分离")
}
BANNER_HTML = """
<div class="hero">
<div class="brand">
<!-- 如有项目 logo,可放到仓库并换成你的地址;没有就删这一行 -->
<!-- <img src="https://raw.githubusercontent.com/Francis-Rings/StableAvatar/main/assets/logo.png" alt="StableAvatar Logo"> -->
<span class="brand-text">STABLEAVATAR</span>
</div>
<div class="titles">
<h1>StableAvatar</h1>
<div class="badges">
<a class="badge" href="https://arxiv.org/abs/2508.08248" target="_blank" rel="noopener">
<img src="https://img.shields.io/badge/arXiv-2508.08248-b31b1b">
</a>
<a class="badge" href="https://francis-rings.github.io/StableAvatar/" target="_blank" rel="noopener">
<img src="https://img.shields.io/badge/Webpage-Visit-2266ee">
</a>
<a class="badge" href="https://github.com/Francis-Rings/StableAvatar" target="_blank" rel="noopener">
<img src="https://img.shields.io/badge/GitHub-Repo-181717?logo=github&logoColor=white">
</a>
<a class="badge" href="https://www.youtube.com/watch?v=6lhvmbzvv3Y" target="_blank" rel="noopener">
<img src="https://img.shields.io/badge/YouTube-Demo-ff0000?logo=youtube&logoColor=white">
</a>
</div>
</div>
</div>
<hr class="divider">
"""
BANNER_CSS = """
.hero{display:flex;align-items:center;gap:18px;padding:18px;border-radius:14px;
color:inherit;margin-bottom:12px}
.brand-text{font-weight:800;letter-spacing:2px}
.brand img{height:46px}
.titles h1{font-size:28px;margin:0 0 6px 0}
.badges{display:flex;gap:10px;flex-wrap:wrap}
.badge img{height:22px}
.divider{border:0;border-top:1px solid rgba(0,0,0,0.12);margin:6px 0 18px}
"""
# with gr.Blocks(theme=gr.themes.Base()) as demo:
# gr.Markdown("""
# <div>
# <h2 style="font-size: 30px;text-align: center;">StableAvatar</h2>
# </div>
# """)
with gr.Blocks(theme=gr.themes.Base(), css=BANNER_CSS) as demo:
gr.HTML(BANNER_HTML)
language_radio = gr.Radio(
choices=["English", "中文"],
value="English",
label="Language / 语言"
)
with gr.Accordion("Model Settings / 模型设置", open=False):
with gr.Row():
GPU_memory_mode = gr.Dropdown(
label = "显存模式",
info = "Normal占用25G显存,model_cpu_offload占用13G显存",
choices = ["Normal", "model_cpu_offload", "model_cpu_offloadand_qfloat8", "sequential_cpu_offload"],
value = "model_cpu_offload"
)
teacache_threshold = gr.Slider(label="teacache threshold", info = "推荐参数0.1,0为禁用teacache加速", minimum=0, maximum=1, step=0.01, value=0)
num_skip_start_steps = gr.Slider(label="跳过开始步数", info = "推荐参数5", minimum=0, maximum=100, step=1, value=5)
with gr.Row():
model_version = gr.Dropdown(
label = "模型版本",
choices = ["square","rec_vec"],
value = "square"
)
stableavatar_title = gr.TabItem(label="StableAvatar")
with stableavatar_title:
with gr.Row():
with gr.Column():
with gr.Row():
image_path = gr.Image(label="上传图片", type="filepath", height=280)
audio_path = gr.Audio(label="上传音频", type="filepath")
prompt = gr.Textbox(label="提示词", value="")
negative_prompt = gr.Textbox(label="负面提示词", value="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走")
generate_button = gr.Button("🎬 开始生成", variant='primary')
parameter_settings_title = gr.Accordion(label="参数设置", open=True)
with parameter_settings_title:
with gr.Row():
width = gr.Slider(label="宽度", minimum=256, maximum=2048, step=16, value=512)
height = gr.Slider(label="高度", minimum=256, maximum=2048, step=16, value=512)
with gr.Row():
exchange_button = gr.Button("🔄 交换宽高")
adjust_button = gr.Button("根据图片调整宽高")
with gr.Row():
guidance_scale = gr.Slider(label="guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=6.0)
num_inference_steps = gr.Slider(label="采样步数(推荐50步)", minimum=1, maximum=100, step=1, value=50)
with gr.Row():
text_guide_scale = gr.Slider(label="text guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=3.0)
audio_guide_scale = gr.Slider(label="audio guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=5.0)
with gr.Row():
motion_frame = gr.Slider(label="motion frame", minimum=1, maximum=50, step=1, value=25)
fps = gr.Slider(label="帧率", minimum=1, maximum=60, step=1, value=25)
with gr.Row():
overlap_window_length = gr.Slider(label="overlap window length", minimum=1, maximum=20, step=1, value=10)
seed_param = gr.Number(label="种子,请输入正整数,-1为随机", value=42)
with gr.Row():
overlapping_weight_scheme = gr.Dropdown(label="Overlapping Weight Scheme", choices=["uniform", "log"], value="uniform")
with gr.Column():
info = gr.Textbox(label="提示信息", interactive=False)
video_output = gr.Video(label="生成结果", interactive=False)
seed_output = gr.Textbox(label="种子")
# 示例案例部分移到StableAvatar标签页内部
example_cases_title = gr.Accordion(label="示例案例", open=True)
with example_cases_title:
example_title = gr.Markdown(value="### 选择以下示例案例进行测试:")
with gr.Row():
with gr.Column():
example1_label = gr.Markdown(value="**示例 1**")
example1_image = gr.Image(value="example_case/case-1/reference.png", label="", interactive=False, height=120, show_label=False)
example1_audio = gr.Audio(value="example_case/case-1/audio.wav", label="", interactive=False, show_label=False)
example1_btn = gr.Button("🚀 使用示例 1", variant="secondary", size="sm")
with gr.Column():
example2_label = gr.Markdown(value="**示例 2**")
example2_image = gr.Image(value="example_case/case-2/reference.png", label="", interactive=False, height=120, show_label=False)
example2_audio = gr.Audio(value="example_case/case-2/audio.wav", label="", interactive=False, show_label=False)
example2_btn = gr.Button("🚀 使用示例 2", variant="secondary", size="sm")
with gr.Column():
example3_label = gr.Markdown(value="**示例 3**")
example3_image = gr.Image(value="example_case/case-6/reference.png", label="", interactive=False, height=120, show_label=False)
example3_audio = gr.Audio(value="example_case/case-6/audio.wav", label="", interactive=False, show_label=False)
example3_btn = gr.Button("🚀 使用示例 3", variant="secondary", size="sm")
with gr.Column():
example4_label = gr.Markdown(value="**示例 4**")
example4_image = gr.Image(value="example_case/case-45/reference.png", label="", interactive=False, height=120, show_label=False)
example4_audio = gr.Audio(value="example_case/case-45/audio.wav", label="", interactive=False, show_label=False)
example4_btn = gr.Button("🚀 使用示例 4", variant="secondary", size="sm")
with gr.Column():
example5_label = gr.Markdown(value="**示例 5**")
example5_image = gr.Image(value="example_case/case-3/reference.jpg", label="", interactive=False, height=120, show_label=False)
example5_audio = gr.Audio(value="example_case/case-3/audio.wav", label="", interactive=False, show_label=False)
example5_btn = gr.Button("🚀 使用示例 5", variant="secondary", size="sm")
audio_extraction_title = gr.TabItem(label="音频提取")
with audio_extraction_title:
with gr.Row():
with gr.Column():
video_path = gr.Video(label="上传视频", height=500)
extractor_button = gr.Button("🎬 开始提取", variant='primary')
with gr.Column():
info2 = gr.Textbox(label="提示信息", interactive=False)
audio_output = gr.Audio(label="生成结果", interactive=False)
audio_file = gr.File(label="download audio file")
vocal_separation_title = gr.TabItem(label="人声分离")
with vocal_separation_title:
with gr.Row():
with gr.Column():
audio_path3 = gr.Audio(label="上传音频", type="filepath")
separation_button = gr.Button("🎬 开始分离", variant='primary')
with gr.Column():
info3 = gr.Textbox(label="提示信息", interactive=False)
audio_output3 = gr.Audio(label="生成结果", interactive=False)
audio_file3 = gr.File(label="download audio file")
# 示例案例部分移到末尾
# example_cases_title = gr.Accordion(label="示例案例", open=True)
# with example_cases_title:
# example_title = gr.Markdown(value="### 选择以下示例案例进行测试:")
# with gr.Row():
# with gr.Column():
# example1_label = gr.Markdown(value="**示例 1**")
# example1_image = gr.Image(value="example_case/case-1/reference.png", label="", interactive=False, height=120, show_label=False)
# example1_audio = gr.Audio(value="example_case/case-1/audio.wav", label="", interactive=False, show_label=False)
# example1_btn = gr.Button("🚀 使用示例 1", variant="secondary", size="sm")
# with gr.Column():
# example2_label = gr.Markdown(value="**示例 2**")
# example2_image = gr.Image(value="example_case/case-2/reference.png", label="", interactive=False, height=120, show_label=False)
# example2_audio = gr.Audio(value="example_case/case-2/audio.wav", label="", interactive=False, show_label=False)
# example2_btn = gr.Button("🚀 使用示例 2", variant="secondary", size="sm")
# with gr.Column():
# example3_label = gr.Markdown(value="**示例 3**")
# example3_image = gr.Image(value="example_case/case-6/reference.png", label="", interactive=False, height=120, show_label=False)
# example3_audio = gr.Audio(value="example_case/case-6/audio.wav", label="", interactive=False, show_label=False)
# example3_btn = gr.Button("🚀 使用示例 3", variant="secondary", size="sm")
# with gr.Column():
# example4_label = gr.Markdown(value="**示例 4**")
# example4_image = gr.Image(value="example_case/case-45/reference.png", label="", interactive=False, height=120, show_label=False)
# example4_audio = gr.Audio(value="example_case/case-45/audio.wav", label="", interactive=False, show_label=False)
# example4_btn = gr.Button("🚀 使用示例 4", variant="secondary", size="sm")
# with gr.Column():
# example5_label = gr.Markdown(value="**示例 5**")
# example5_image = gr.Image(value="example_case/case-3/reference.jpg", label="", interactive=False, height=120, show_label=False)
# example5_audio = gr.Audio(value="example_case/case-3/audio.wav", label="", interactive=False, show_label=False)
# example5_btn = gr.Button("🚀 使用示例 5", variant="secondary", size="sm")
all_components = [GPU_memory_mode, teacache_threshold, num_skip_start_steps, model_version, image_path, audio_path, prompt, negative_prompt, generate_button, width, height, exchange_button, adjust_button, guidance_scale, num_inference_steps, text_guide_scale, audio_guide_scale, motion_frame, fps, overlap_window_length, seed_param, overlapping_weight_scheme, info, video_output, seed_output, video_path, extractor_button, info2, audio_output, audio_path3, separation_button, info3, audio_output3, example_title, example1_label, example2_label, example3_label, example4_label, example1_btn, example2_btn, example3_btn, example4_btn, example5_label, example5_btn, parameter_settings_title, example_cases_title, stableavatar_title, audio_extraction_title, vocal_separation_title]
language_radio.change(
fn=update_language,
inputs=[language_radio],
outputs=all_components
)
# 添加模型版本选择的事件处理
def on_model_version_change(model_version):
"""当模型版本改变时,重新加载对应的模型"""
result = load_transformer_model(model_version)
if result is not None:
return f"✅ 模型已切换到 {model_version} 版本"
else:
return f"❌ 模型切换失败,请检查文件是否存在"
model_version.change(
fn=on_model_version_change,
inputs=[model_version],
outputs=[info]
)
demo.load(fn=update_language, inputs=[language_radio], outputs=all_components)
# 添加示例案例按钮的事件处理
def load_example1():
try:
with open("example_case/case-1/prompt.txt", "r", encoding="utf-8") as f:
prompt_text = f.read().strip()
except:
prompt_text = ""
return "example_case/case-1/reference.png", "example_case/case-1/audio.wav", prompt_text
def load_example2():
try:
with open("example_case/case-2/prompt.txt", "r", encoding="utf-8") as f:
prompt_text = f.read().strip()
except:
prompt_text = ""
return "example_case/case-2/reference.png", "example_case/case-2/audio.wav", prompt_text
def load_example3():
try:
with open("example_case/case-6/prompt.txt", "r", encoding="utf-8") as f:
prompt_text = f.read().strip()
except:
prompt_text = ""
return "example_case/case-6/reference.png", "example_case/case-6/audio.wav", prompt_text
def load_example4():
try:
with open("example_case/case-45/prompt.txt", "r", encoding="utf-8") as f:
prompt_text = f.read().strip()
except:
prompt_text = ""
return "example_case/case-45/reference.png", "example_case/case-45/audio.wav", prompt_text
def load_example5():
try:
with open("example_case/case-3/prompt.txt", "r", encoding="utf-8") as f:
prompt_text = f.read().strip()
except:
prompt_text = ""
return "example_case/case-3/reference.jpg", "example_case/case-3/audio.wav", prompt_text
example1_btn.click(fn=load_example1, outputs=[image_path, audio_path, prompt])
example2_btn.click(fn=load_example2, outputs=[image_path, audio_path, prompt])
example3_btn.click(fn=load_example3, outputs=[image_path, audio_path, prompt])
example4_btn.click(fn=load_example4, outputs=[image_path, audio_path, prompt])
example5_btn.click(fn=load_example5, outputs=[image_path, audio_path, prompt])
gr.on(
triggers=[generate_button.click, prompt.submit, negative_prompt.submit],
fn = generate,
inputs = [
GPU_memory_mode,
teacache_threshold,
num_skip_start_steps,
image_path,
audio_path,
prompt,
negative_prompt,
width,
height,
guidance_scale,
num_inference_steps,
text_guide_scale,
audio_guide_scale,
motion_frame,
fps,
overlap_window_length,
seed_param,
overlapping_weight_scheme,
],
outputs = [video_output, seed_output, info]
)
exchange_button.click(
fn=exchange_width_height,
inputs=[width, height],
outputs=[width, height, info]
)
adjust_button.click(
fn=adjust_width_height,
inputs=[image_path],
outputs=[width, height, info]
)
extractor_button.click(
fn=audio_extractor,
inputs=[video_path],
outputs=[audio_output, info2, audio_file]
)
separation_button.click(
fn=vocal_separation,
inputs=[audio_path3],
outputs=[audio_output3, info3, audio_file3]
)
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=int(os.getenv("PORT", 7860)),
share=False,
inbrowser=False,
)
|