File size: 36,378 Bytes
cf2f35c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75e7c94
cf2f35c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4599acf
cf2f35c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75e7c94
cf2f35c
 
 
 
 
75e7c94
cf2f35c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
import torch
import psutil
import argparse
import gradio as gr
import os
from diffusers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import load_image
from transformers import AutoTokenizer, Wav2Vec2Model, Wav2Vec2Processor
from omegaconf import OmegaConf
from wan.models.cache_utils import get_teacache_coefficients
from wan.models.wan_fantasy_transformer3d_1B import WanTransformer3DFantasyModel
from wan.models.wan_text_encoder import WanT5EncoderModel
from wan.models.wan_vae import AutoencoderKLWan
from wan.models.wan_image_encoder import CLIPModel
from wan.pipeline.wan_inference_long_pipeline import WanI2VTalkingInferenceLongPipeline
from wan.utils.fp8_optimization import replace_parameters_by_name, convert_weight_dtype_wrapper, convert_model_weight_to_float8
from wan.utils.utils import get_image_to_video_latent, save_videos_grid
import numpy as np
import librosa
import datetime
import random
import math
import subprocess
from moviepy.editor import VideoFileClip
from huggingface_hub import snapshot_download
import shutil
import spaces
try:
    from audio_separator.separator import Separator
except:
    print("Unable to use vocal separation feature. Please install audio-separator[gpu].")


if torch.cuda.is_available():
    device = "cuda" 
    if torch.cuda.get_device_capability()[0] >= 8:
        dtype = torch.bfloat16
    else:
        dtype = torch.float16
else:
    device = "cpu"
    dtype = torch.float32


def filter_kwargs(cls, kwargs):
    import inspect
    sig = inspect.signature(cls.__init__)
    valid_params = set(sig.parameters.keys()) - {'self', 'cls'}
    filtered_kwargs = {k: v for k, v in kwargs.items() if k in valid_params}
    return filtered_kwargs


def load_transformer_model(model_version):
    """
    根据选择的模型版本加载对应的transformer模型
    
    Args:
        model_version (str): 模型版本,"square" 或 "rec_vec"
    
    Returns:
        WanTransformer3DFantasyModel: 加载的transformer模型
    """
    global transformer3d
    
    if model_version == "square":
        transformer_path = os.path.join(repo_root, "StableAvatar-1.3B", "transformer3d-square.pt")
    elif model_version == "rec_vec":
        transformer_path = os.path.join(repo_root, "StableAvatar-1.3B", "transformer3d-rec-vec.pt")
    else:
        # 默认使用square版本
        transformer_path = os.path.join(repo_root, "StableAvatar-1.3B", "transformer3d-square.pt")
    
    print(f"正在加载模型: {transformer_path}")
    
    if os.path.exists(transformer_path):
        state_dict = torch.load(transformer_path, map_location="cpu")
        state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict
        m, u = transformer3d.load_state_dict(state_dict, strict=False)
        print(f"模型加载成功: {transformer_path}")
        print(f"Missing keys: {len(m)}; Unexpected keys: {len(u)}")
        return transformer3d
    else:
        print(f"错误:模型文件不存在: {transformer_path}")
        return None


REPO_ID = "FrancisRing/StableAvatar"
repo_root = snapshot_download(
    repo_id=REPO_ID,
    allow_patterns=[
        "StableAvatar-1.3B/*",
        "Wan2.1-Fun-V1.1-1.3B-InP/*",
        "wav2vec2-base-960h/*",
        "assets/**",
        "Kim_Vocal_2.onnx",
    ],
)
pretrained_model_name_or_path = os.path.join(repo_root, "Wan2.1-Fun-V1.1-1.3B-InP")
pretrained_wav2vec_path       = os.path.join(repo_root, "wav2vec2-base-960h")


# 人声分离 onnx
audio_separator_model_file = os.path.join(repo_root, "Kim_Vocal_2.onnx")

# model_path = "/datadrive/stableavatar/checkpoints"
# pretrained_model_name_or_path = f"{model_path}/Wan2.1-Fun-V1.1-1.3B-InP"
# pretrained_wav2vec_path = f"{model_path}/wav2vec2-base-960h"
# transformer_path = f"{model_path}/StableAvatar-1.3B/transformer3d-square.pt"
config = OmegaConf.load("deepspeed_config/wan2.1/wan_civitai.yaml")
sampler_name = "Flow"
clip_sample_n_frames = 81
tokenizer = AutoTokenizer.from_pretrained(os.path.join(pretrained_model_name_or_path, config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer')), )
text_encoder = WanT5EncoderModel.from_pretrained(
    os.path.join(pretrained_model_name_or_path, config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder')),
    additional_kwargs=OmegaConf.to_container(config['text_encoder_kwargs']),
    low_cpu_mem_usage=True,
    torch_dtype=dtype,
)
text_encoder = text_encoder.eval()
vae = AutoencoderKLWan.from_pretrained(
    os.path.join(pretrained_model_name_or_path, config['vae_kwargs'].get('vae_subpath', 'vae')),
    additional_kwargs=OmegaConf.to_container(config['vae_kwargs']),
)
wav2vec_processor = Wav2Vec2Processor.from_pretrained(pretrained_wav2vec_path)
wav2vec = Wav2Vec2Model.from_pretrained(pretrained_wav2vec_path).to("cpu")
clip_image_encoder = CLIPModel.from_pretrained(os.path.join(pretrained_model_name_or_path, config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder')), )
clip_image_encoder = clip_image_encoder.eval()
transformer3d = WanTransformer3DFantasyModel.from_pretrained(
    os.path.join(pretrained_model_name_or_path, config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')),
    transformer_additional_kwargs=OmegaConf.to_container(config['transformer_additional_kwargs']),
    low_cpu_mem_usage=False,
    torch_dtype=dtype,
)

# 默认加载square版本模型
load_transformer_model("square")
Choosen_Scheduler = scheduler_dict = {
    "Flow": FlowMatchEulerDiscreteScheduler,
}[sampler_name]
scheduler = Choosen_Scheduler(
    **filter_kwargs(Choosen_Scheduler, OmegaConf.to_container(config['scheduler_kwargs']))
)
pipeline = WanI2VTalkingInferenceLongPipeline(
    tokenizer=tokenizer,
    text_encoder=text_encoder,
    vae=vae,
    transformer=transformer3d,
    clip_image_encoder=clip_image_encoder,
    scheduler=scheduler,
    wav2vec_processor=wav2vec_processor,
    wav2vec=wav2vec,
)

@spaces.GPU(duration=120)
def generate(
    GPU_memory_mode,
    teacache_threshold,
    num_skip_start_steps,
    image_path,
    audio_path,
    prompt,
    negative_prompt,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    text_guide_scale,
    audio_guide_scale,
    motion_frame,
    fps,
    overlap_window_length,
    seed_param,
    overlapping_weight_scheme,
    progress=gr.Progress(track_tqdm=True),
):
    global pipeline, transformer3d
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    if seed_param<0:
        seed = random.randint(0, np.iinfo(np.int32).max)
    else:
        seed = seed_param

    if GPU_memory_mode == "sequential_cpu_offload":
        replace_parameters_by_name(transformer3d, ["modulation", ], device=device)
        transformer3d.freqs = transformer3d.freqs.to(device=device)
        pipeline.enable_sequential_cpu_offload(device=device)
    elif GPU_memory_mode == "model_cpu_offload_and_qfloat8":
        convert_model_weight_to_float8(transformer3d, exclude_module_name=["modulation", ])
        convert_weight_dtype_wrapper(transformer3d, dtype)
        pipeline.enable_model_cpu_offload(device=device)
    elif GPU_memory_mode == "model_cpu_offload":
        pipeline.enable_model_cpu_offload(device=device)
    else:
        pipeline.to(device=device)
        
    if teacache_threshold > 0:
        coefficients = get_teacache_coefficients(pretrained_model_name_or_path)
        pipeline.transformer.enable_teacache(
            coefficients,
            num_inference_steps,
            teacache_threshold,
            num_skip_start_steps=num_skip_start_steps,
        )

    with torch.no_grad():
        video_length = int((clip_sample_n_frames - 1) // vae.config.temporal_compression_ratio * vae.config.temporal_compression_ratio) + 1 if clip_sample_n_frames != 1 else 1
        input_video, input_video_mask, clip_image = get_image_to_video_latent(image_path, None, video_length=video_length, sample_size=[height, width])
        sr = 16000
        vocal_input, sample_rate = librosa.load(audio_path, sr=sr)
        sample = pipeline(
            prompt,
            num_frames=video_length,
            negative_prompt=negative_prompt,
            width=width,
            height=height,
            guidance_scale=guidance_scale,
            generator=torch.Generator().manual_seed(seed),
            num_inference_steps=num_inference_steps,
            video=input_video,
            mask_video=input_video_mask,
            clip_image=clip_image,
            text_guide_scale=text_guide_scale,
            audio_guide_scale=audio_guide_scale,
            vocal_input_values=vocal_input,
            motion_frame=motion_frame,
            fps=fps,
            sr=sr,
            cond_file_path=image_path,
            overlap_window_length=overlap_window_length,
            seed=seed,
            overlapping_weight_scheme=overlapping_weight_scheme,
        ).videos
        os.makedirs("outputs", exist_ok=True)
        video_path = os.path.join("outputs", f"{timestamp}.mp4")
        save_videos_grid(sample, video_path, fps=fps)
        output_video_with_audio = os.path.join("outputs", f"{timestamp}_audio.mp4")
        subprocess.run([
            "ffmpeg", "-y", "-loglevel", "quiet", "-i", video_path, "-i", audio_path, 
            "-c:v", "copy", "-c:a", "aac", "-strict", "experimental", 
            output_video_with_audio
        ], check=True)
        
    return output_video_with_audio, seed, f"Generated outputs/{timestamp}.mp4 / 已生成outputs/{timestamp}.mp4"


def exchange_width_height(width, height):
    return height, width, "✅ Width and Height Swapped / 宽高交换完毕"


def adjust_width_height(image):
    image = load_image(image)
    width, height = image.size
    original_area = width * height
    default_area = 512*512
    ratio = math.sqrt(original_area / default_area)
    width = width / ratio // 16 * 16
    height = height / ratio // 16 * 16
    return int(width), int(height), "✅ Adjusted Size Based on Image / 根据图片调整宽高"


def audio_extractor(video_path):
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    os.makedirs("outputs", exist_ok=True)  # 确保目录存在
    out_wav = os.path.abspath(os.path.join("outputs", f"{timestamp}.wav"))
    video = VideoFileClip(video_path)
    audio = video.audio
    audio.write_audiofile(out_wav, codec="pcm_s16le")
    return out_wav, f"Generated {out_wav} / 已生成 {out_wav}", out_wav  # ← 第3个返回给 gr.File

def vocal_separation(audio_path):
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    os.makedirs("outputs", exist_ok=True)
    # audio_separator_model_file = "checkpoints/Kim_Vocal_2.onnx"
    audio_separator = Separator(
        output_dir=os.path.abspath(os.path.join("outputs", timestamp)),
        output_single_stem="vocals",
        model_file_dir=os.path.dirname(audio_separator_model_file),
    )
    audio_separator.load_model(os.path.basename(audio_separator_model_file))
    assert audio_separator.model_instance is not None, "Fail to load audio separate model."
    outputs = audio_separator.separate(audio_path)
    vocal_audio_file = os.path.join(audio_separator.output_dir, outputs[0])
    destination_file = os.path.abspath(os.path.join("outputs", f"{timestamp}.wav"))
    shutil.copy(vocal_audio_file, destination_file)
    os.remove(vocal_audio_file)
    return destination_file, f"Generated {destination_file} / 已生成 {destination_file}", destination_file


def update_language(language):
    if language == "English":
        return {
            GPU_memory_mode: gr.Dropdown(label="GPU Memory Mode", info="Normal uses 25G VRAM, model_cpu_offload uses 13G VRAM"),
            teacache_threshold: gr.Slider(label="TeaCache Threshold", info="Recommended 0.1, 0 disables TeaCache acceleration"),
            num_skip_start_steps: gr.Slider(label="Skip Start Steps", info="Recommended 5"),
            model_version: gr.Dropdown(label="Model Version",  choices=["square", "rec_vec"], value="square"),
            image_path: gr.Image(label="Upload Image"),
            audio_path: gr.Audio(label="Upload Audio"),
            prompt: gr.Textbox(label="Prompt"),
            negative_prompt: gr.Textbox(label="Negative Prompt"),
            generate_button: gr.Button("🎬 Start Generation"),
            width: gr.Slider(label="Width"),
            height: gr.Slider(label="Height"),
            exchange_button: gr.Button("🔄 Swap Width/Height"),
            adjust_button: gr.Button("Adjust Size Based on Image"),
            guidance_scale: gr.Slider(label="Guidance Scale"),
            num_inference_steps: gr.Slider(label="Sampling Steps (Recommended 50)"),
            text_guide_scale: gr.Slider(label="Text Guidance Scale"),
            audio_guide_scale: gr.Slider(label="Audio Guidance Scale"),
            motion_frame: gr.Slider(label="Motion Frame"),
            fps: gr.Slider(label="FPS"),
            overlap_window_length: gr.Slider(label="Overlap Window Length"),
            seed_param: gr.Number(label="Seed (positive integer, -1 for random)"),
            overlapping_weight_scheme: gr.Dropdown(label="Overlapping Weight Scheme", choices=["uniform", "log"], value="uniform"),
            info: gr.Textbox(label="Status"),
            video_output: gr.Video(label="Generated Result"),
            seed_output: gr.Textbox(label="Seed"),
            video_path: gr.Video(label="Upload Video"),
            extractor_button: gr.Button("🎬 Start Extraction"),
            info2: gr.Textbox(label="Status"),
            audio_output: gr.Audio(label="Generated Result"),
            audio_path3: gr.Audio(label="Upload Audio"),
            separation_button: gr.Button("🎬 Start Separation"),
            info3: gr.Textbox(label="Status"),
            audio_output3: gr.Audio(label="Generated Result"),
            example_title: gr.Markdown(value="### Select the following example cases for testing:"),
            example1_label: gr.Markdown(value="**Example 1**"),
            example2_label: gr.Markdown(value="**Example 2**"),
            example3_label: gr.Markdown(value="**Example 3**"),
            example4_label: gr.Markdown(value="**Example 4**"),
            example5_label: gr.Markdown(value="**Example 5**"),
            example1_btn: gr.Button("🚀 Use Example 1", variant="secondary"),
            example2_btn: gr.Button("🚀 Use Example 2", variant="secondary"),
            example3_btn: gr.Button("🚀 Use Example 3", variant="secondary"),
            example4_btn: gr.Button("🚀 Use Example 4", variant="secondary"),
            example5_btn: gr.Button("🚀 Use Example 5", variant="secondary"),
            parameter_settings_title: gr.Accordion(label="Parameter Settings", open=True),
            example_cases_title: gr.Accordion(label="Example Cases", open=True),
            stableavatar_title: gr.TabItem(label="StableAvatar"),
            audio_extraction_title: gr.TabItem(label="Audio Extraction"),
            vocal_separation_title: gr.TabItem(label="Vocal Separation")
        }
    else:
        return {
            GPU_memory_mode: gr.Dropdown(label="显存模式", info="Normal占用25G显存,model_cpu_offload占用13G显存"),
            teacache_threshold: gr.Slider(label="teacache threshold", info="推荐参数0.1,0为禁用teacache加速"),
            num_skip_start_steps: gr.Slider(label="跳过开始步数", info="推荐参数5"),
            model_version: gr.Dropdown(label="模型版本", choices=["square", "rec_vec"], value="square"),
            image_path: gr.Image(label="上传图片"),
            audio_path: gr.Audio(label="上传音频"),
            prompt: gr.Textbox(label="提示词"),
            negative_prompt: gr.Textbox(label="负面提示词"),
            generate_button: gr.Button("🎬 开始生成"),
            width: gr.Slider(label="宽度"),
            height: gr.Slider(label="高度"),
            exchange_button: gr.Button("🔄 交换宽高"),
            adjust_button: gr.Button("根据图片调整宽高"),
            guidance_scale: gr.Slider(label="guidance scale"),
            num_inference_steps: gr.Slider(label="采样步数(推荐50步)", minimum=1, maximum=100, step=1, value=50),
            text_guide_scale: gr.Slider(label="text guidance scale"),
            audio_guide_scale: gr.Slider(label="audio guidance scale"),
            motion_frame: gr.Slider(label="motion frame"),
            fps: gr.Slider(label="帧率"),
            overlap_window_length: gr.Slider(label="overlap window length"),
            seed_param: gr.Number(label="种子,请输入正整数,-1为随机"),
            overlapping_weight_scheme: gr.Dropdown(label="Overlapping Weight Scheme", choices=["uniform", "log"], value="uniform"),
            info: gr.Textbox(label="提示信息"),
            video_output: gr.Video(label="生成结果"),
            seed_output: gr.Textbox(label="种子"),
            video_path: gr.Video(label="上传视频"),
            extractor_button: gr.Button("🎬 开始提取"),
            info2: gr.Textbox(label="提示信息"),
            audio_output: gr.Audio(label="生成结果"),
            audio_path3: gr.Audio(label="上传音频"),
            separation_button: gr.Button("🎬 开始分离"),
            info3: gr.Textbox(label="提示信息"),
            audio_output3: gr.Audio(label="生成结果"),
            example_title: gr.Markdown(value="### 选择以下示例案例进行测试:"),
            example1_label: gr.Markdown(value="**示例 1**"),
            example2_label: gr.Markdown(value="**示例 2**"),
            example3_label: gr.Markdown(value="**示例 3**"),
            example4_label: gr.Markdown(value="**示例 4**"),
            example5_label: gr.Markdown(value="**示例 5**"),
            example1_btn: gr.Button("🚀 使用示例 1", variant="secondary"),
            example2_btn: gr.Button("🚀 使用示例 2", variant="secondary"),
            example3_btn: gr.Button("🚀 使用示例 3", variant="secondary"),
            example4_btn: gr.Button("🚀 使用示例 4", variant="secondary"),
            example5_btn: gr.Button("🚀 使用示例 5", variant="secondary"),
            parameter_settings_title: gr.Accordion(label="参数设置", open=True),
            example_cases_title: gr.Accordion(label="示例案例", open=True),
            stableavatar_title: gr.TabItem(label="StableAvatar"),
            audio_extraction_title: gr.TabItem(label="音频提取"),
            vocal_separation_title: gr.TabItem(label="人声分离")
        }

BANNER_HTML = """
<div class="hero">
  <div class="brand">
    <!-- 如有项目 logo,可放到仓库并换成你的地址;没有就删这一行 -->
    <!-- <img src="https://raw.githubusercontent.com/Francis-Rings/StableAvatar/main/assets/logo.png" alt="StableAvatar Logo"> -->
    <span class="brand-text">STABLEAVATAR</span>
  </div>
  <div class="titles">
    <h1>StableAvatar</h1>
    <div class="badges">
      <a class="badge" href="https://arxiv.org/abs/2508.08248" target="_blank" rel="noopener">
        <img src="https://img.shields.io/badge/arXiv-2508.08248-b31b1b">
      </a>
      <a class="badge" href="https://francis-rings.github.io/StableAvatar/" target="_blank" rel="noopener">
        <img src="https://img.shields.io/badge/Webpage-Visit-2266ee">
      </a>
      <a class="badge" href="https://github.com/Francis-Rings/StableAvatar" target="_blank" rel="noopener">
        <img src="https://img.shields.io/badge/GitHub-Repo-181717?logo=github&logoColor=white">
      </a>
      <a class="badge" href="https://www.youtube.com/watch?v=6lhvmbzvv3Y" target="_blank" rel="noopener">
        <img src="https://img.shields.io/badge/YouTube-Demo-ff0000?logo=youtube&logoColor=white">
      </a>
    </div>
  </div>
</div>
<hr class="divider">
"""

BANNER_CSS = """
.hero{display:flex;align-items:center;gap:18px;padding:18px;border-radius:14px;
      color:inherit;margin-bottom:12px}
.brand-text{font-weight:800;letter-spacing:2px}
.brand img{height:46px}
.titles h1{font-size:28px;margin:0 0 6px 0}
.badges{display:flex;gap:10px;flex-wrap:wrap}
.badge img{height:22px}
.divider{border:0;border-top:1px solid rgba(0,0,0,0.12);margin:6px 0 18px}
"""


# with gr.Blocks(theme=gr.themes.Base()) as demo:
#     gr.Markdown("""
#             <div>
#                 <h2 style="font-size: 30px;text-align: center;">StableAvatar</h2>
#             </div>
#             """)
with gr.Blocks(theme=gr.themes.Base(), css=BANNER_CSS) as demo:
    gr.HTML(BANNER_HTML)
    
    language_radio = gr.Radio(
        choices=["English", "中文"], 
        value="English", 
        label="Language / 语言"
    )
    
    with gr.Accordion("Model Settings / 模型设置", open=False):
        with gr.Row():
            GPU_memory_mode = gr.Dropdown(
                label = "显存模式", 
                info = "Normal占用25G显存,model_cpu_offload占用13G显存", 
                choices = ["Normal", "model_cpu_offload", "model_cpu_offloadand_qfloat8", "sequential_cpu_offload"], 
                value = "model_cpu_offload"
            )
            teacache_threshold = gr.Slider(label="teacache threshold", info = "推荐参数0.1,0为禁用teacache加速", minimum=0, maximum=1, step=0.01, value=0)
            num_skip_start_steps = gr.Slider(label="跳过开始步数", info = "推荐参数5", minimum=0, maximum=100, step=1, value=5)
        with gr.Row():
            model_version = gr.Dropdown(
                label = "模型版本",
                choices = ["square","rec_vec"],
                value = "square"
            )
    
    stableavatar_title = gr.TabItem(label="StableAvatar")
    with stableavatar_title:
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    image_path = gr.Image(label="上传图片", type="filepath", height=280)
                    audio_path = gr.Audio(label="上传音频", type="filepath")
                prompt = gr.Textbox(label="提示词", value="")
                negative_prompt = gr.Textbox(label="负面提示词", value="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走")
                generate_button = gr.Button("🎬 开始生成", variant='primary')
                parameter_settings_title = gr.Accordion(label="参数设置", open=True)
                with parameter_settings_title:
                    with gr.Row():
                        width = gr.Slider(label="宽度", minimum=256, maximum=2048, step=16, value=512)
                        height = gr.Slider(label="高度", minimum=256, maximum=2048, step=16, value=512)
                    with gr.Row():
                        exchange_button = gr.Button("🔄 交换宽高")
                        adjust_button = gr.Button("根据图片调整宽高")
                    with gr.Row():
                        guidance_scale = gr.Slider(label="guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=6.0)
                        num_inference_steps = gr.Slider(label="采样步数(推荐50步)", minimum=1, maximum=100, step=1, value=50)
                    with gr.Row():
                        text_guide_scale = gr.Slider(label="text guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=3.0)
                        audio_guide_scale = gr.Slider(label="audio guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=5.0)
                    with gr.Row():
                        motion_frame = gr.Slider(label="motion frame", minimum=1, maximum=50, step=1, value=25)
                        fps = gr.Slider(label="帧率", minimum=1, maximum=60, step=1, value=25)
                    with gr.Row():
                        overlap_window_length = gr.Slider(label="overlap window length", minimum=1, maximum=20, step=1, value=10)
                        seed_param = gr.Number(label="种子,请输入正整数,-1为随机", value=42)
                    with gr.Row():
                        overlapping_weight_scheme = gr.Dropdown(label="Overlapping Weight Scheme", choices=["uniform", "log"], value="uniform")
            with gr.Column():
                info = gr.Textbox(label="提示信息", interactive=False)
                video_output = gr.Video(label="生成结果", interactive=False)
                seed_output = gr.Textbox(label="种子")
        
        # 示例案例部分移到StableAvatar标签页内部
        example_cases_title = gr.Accordion(label="示例案例", open=True)
        with example_cases_title:
            example_title = gr.Markdown(value="### 选择以下示例案例进行测试:")
            with gr.Row():
                with gr.Column():
                    example1_label = gr.Markdown(value="**示例 1**")
                    example1_image = gr.Image(value="example_case/case-1/reference.png", label="", interactive=False, height=120, show_label=False)
                    example1_audio = gr.Audio(value="example_case/case-1/audio.wav", label="", interactive=False, show_label=False)
                    example1_btn = gr.Button("🚀 使用示例 1", variant="secondary", size="sm")
                
                with gr.Column():
                    example2_label = gr.Markdown(value="**示例 2**")
                    example2_image = gr.Image(value="example_case/case-2/reference.png", label="", interactive=False, height=120, show_label=False)
                    example2_audio = gr.Audio(value="example_case/case-2/audio.wav", label="", interactive=False, show_label=False)
                    example2_btn = gr.Button("🚀 使用示例 2", variant="secondary", size="sm")
                
                with gr.Column():
                    example3_label = gr.Markdown(value="**示例 3**")
                    example3_image = gr.Image(value="example_case/case-6/reference.png", label="", interactive=False, height=120, show_label=False)
                    example3_audio = gr.Audio(value="example_case/case-6/audio.wav", label="", interactive=False, show_label=False)
                    example3_btn = gr.Button("🚀 使用示例 3", variant="secondary", size="sm")
                
                with gr.Column():
                    example4_label = gr.Markdown(value="**示例 4**")
                    example4_image = gr.Image(value="example_case/case-45/reference.png", label="", interactive=False, height=120, show_label=False)
                    example4_audio = gr.Audio(value="example_case/case-45/audio.wav", label="", interactive=False, show_label=False)
                    example4_btn = gr.Button("🚀 使用示例 4", variant="secondary", size="sm")
                
                with gr.Column():
                    example5_label = gr.Markdown(value="**示例 5**")
                    example5_image = gr.Image(value="example_case/case-3/reference.jpg", label="", interactive=False, height=120, show_label=False)
                    example5_audio = gr.Audio(value="example_case/case-3/audio.wav", label="", interactive=False, show_label=False)
                    example5_btn = gr.Button("🚀 使用示例 5", variant="secondary", size="sm")

    audio_extraction_title = gr.TabItem(label="音频提取")
    with audio_extraction_title:
        with gr.Row():
            with gr.Column():
                video_path = gr.Video(label="上传视频", height=500)
                extractor_button = gr.Button("🎬 开始提取", variant='primary')
            with gr.Column():
                info2 = gr.Textbox(label="提示信息", interactive=False)
                audio_output = gr.Audio(label="生成结果", interactive=False)
                audio_file = gr.File(label="download audio file") 
    
    vocal_separation_title = gr.TabItem(label="人声分离")
    with vocal_separation_title:
        with gr.Row():
            with gr.Column():
                audio_path3 = gr.Audio(label="上传音频", type="filepath")
                separation_button = gr.Button("🎬 开始分离", variant='primary')
            with gr.Column():
                info3 = gr.Textbox(label="提示信息", interactive=False)
                audio_output3 = gr.Audio(label="生成结果", interactive=False)
                audio_file3 = gr.File(label="download audio file") 
    
    # 示例案例部分移到末尾
    # example_cases_title = gr.Accordion(label="示例案例", open=True)
    # with example_cases_title:
    #     example_title = gr.Markdown(value="### 选择以下示例案例进行测试:")
    #     with gr.Row():
    #         with gr.Column():
    #             example1_label = gr.Markdown(value="**示例 1**")
    #             example1_image = gr.Image(value="example_case/case-1/reference.png", label="", interactive=False, height=120, show_label=False)
    #             example1_audio = gr.Audio(value="example_case/case-1/audio.wav", label="", interactive=False, show_label=False)
    #             example1_btn = gr.Button("🚀 使用示例 1", variant="secondary", size="sm")
            
    #         with gr.Column():
    #             example2_label = gr.Markdown(value="**示例 2**")
    #             example2_image = gr.Image(value="example_case/case-2/reference.png", label="", interactive=False, height=120, show_label=False)
    #             example2_audio = gr.Audio(value="example_case/case-2/audio.wav", label="", interactive=False, show_label=False)
    #             example2_btn = gr.Button("🚀 使用示例 2", variant="secondary", size="sm")
            
    #         with gr.Column():
    #             example3_label = gr.Markdown(value="**示例 3**")
    #             example3_image = gr.Image(value="example_case/case-6/reference.png", label="", interactive=False, height=120, show_label=False)
    #             example3_audio = gr.Audio(value="example_case/case-6/audio.wav", label="", interactive=False, show_label=False)
    #             example3_btn = gr.Button("🚀 使用示例 3", variant="secondary", size="sm")
            
    #         with gr.Column():
    #             example4_label = gr.Markdown(value="**示例 4**")
    #             example4_image = gr.Image(value="example_case/case-45/reference.png", label="", interactive=False, height=120, show_label=False)
    #             example4_audio = gr.Audio(value="example_case/case-45/audio.wav", label="", interactive=False, show_label=False)
    #             example4_btn = gr.Button("🚀 使用示例 4", variant="secondary", size="sm")
            
    #         with gr.Column():
    #             example5_label = gr.Markdown(value="**示例 5**")
    #             example5_image = gr.Image(value="example_case/case-3/reference.jpg", label="", interactive=False, height=120, show_label=False)
    #             example5_audio = gr.Audio(value="example_case/case-3/audio.wav", label="", interactive=False, show_label=False)
    #             example5_btn = gr.Button("🚀 使用示例 5", variant="secondary", size="sm")

    all_components = [GPU_memory_mode, teacache_threshold, num_skip_start_steps, model_version, image_path, audio_path, prompt, negative_prompt, generate_button, width, height, exchange_button, adjust_button, guidance_scale, num_inference_steps, text_guide_scale, audio_guide_scale, motion_frame, fps, overlap_window_length, seed_param, overlapping_weight_scheme, info, video_output, seed_output, video_path, extractor_button, info2, audio_output, audio_path3, separation_button, info3, audio_output3, example_title, example1_label, example2_label, example3_label, example4_label, example1_btn, example2_btn, example3_btn, example4_btn, example5_label, example5_btn, parameter_settings_title, example_cases_title, stableavatar_title, audio_extraction_title, vocal_separation_title]

    language_radio.change(
        fn=update_language,
        inputs=[language_radio],
        outputs=all_components
    )

    # 添加模型版本选择的事件处理
    def on_model_version_change(model_version):
        """当模型版本改变时,重新加载对应的模型"""
        result = load_transformer_model(model_version)
        if result is not None:
            return f"✅ 模型已切换到 {model_version} 版本"
        else:
            return f"❌ 模型切换失败,请检查文件是否存在"

    model_version.change(
        fn=on_model_version_change,
        inputs=[model_version],
        outputs=[info]
    )

    demo.load(fn=update_language, inputs=[language_radio], outputs=all_components)
    # 添加示例案例按钮的事件处理
    def load_example1():
        try:
            with open("example_case/case-1/prompt.txt", "r", encoding="utf-8") as f:
                prompt_text = f.read().strip()
        except:
            prompt_text = ""
        return "example_case/case-1/reference.png", "example_case/case-1/audio.wav", prompt_text
    
    def load_example2():
        try:
            with open("example_case/case-2/prompt.txt", "r", encoding="utf-8") as f:
                prompt_text = f.read().strip()
        except:
            prompt_text = ""
        return "example_case/case-2/reference.png", "example_case/case-2/audio.wav", prompt_text
    
    def load_example3():
        try:
            with open("example_case/case-6/prompt.txt", "r", encoding="utf-8") as f:
                prompt_text = f.read().strip()
        except:
            prompt_text = ""
        return "example_case/case-6/reference.png", "example_case/case-6/audio.wav", prompt_text
    
    def load_example4():
        try:
            with open("example_case/case-45/prompt.txt", "r", encoding="utf-8") as f:
                prompt_text = f.read().strip()
        except:
            prompt_text = ""
        return "example_case/case-45/reference.png", "example_case/case-45/audio.wav", prompt_text
    
    def load_example5():
        try:
            with open("example_case/case-3/prompt.txt", "r", encoding="utf-8") as f:
                prompt_text = f.read().strip()
        except:
            prompt_text = ""
        return "example_case/case-3/reference.jpg", "example_case/case-3/audio.wav", prompt_text

    example1_btn.click(fn=load_example1, outputs=[image_path, audio_path, prompt])
    example2_btn.click(fn=load_example2, outputs=[image_path, audio_path, prompt])
    example3_btn.click(fn=load_example3, outputs=[image_path, audio_path, prompt])
    example4_btn.click(fn=load_example4, outputs=[image_path, audio_path, prompt])
    example5_btn.click(fn=load_example5, outputs=[image_path, audio_path, prompt])
    gr.on(
        triggers=[generate_button.click, prompt.submit, negative_prompt.submit],
        fn = generate,
        inputs = [
            GPU_memory_mode,
            teacache_threshold,
            num_skip_start_steps,
            image_path,
            audio_path,
            prompt,
            negative_prompt,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            text_guide_scale,
            audio_guide_scale,
            motion_frame,
            fps,
            overlap_window_length,
            seed_param,
            overlapping_weight_scheme,
        ],
        outputs = [video_output, seed_output, info]
    )
    exchange_button.click(
        fn=exchange_width_height, 
        inputs=[width, height], 
        outputs=[width, height, info]
    )
    adjust_button.click(
        fn=adjust_width_height, 
        inputs=[image_path], 
        outputs=[width, height, info]
    )
    extractor_button.click(
        fn=audio_extractor, 
        inputs=[video_path], 
        outputs=[audio_output, info2, audio_file]
    )
    separation_button.click(
        fn=vocal_separation, 
        inputs=[audio_path3], 
        outputs=[audio_output3, info3, audio_file3]
    )


if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=int(os.getenv("PORT", 7860)),
        share=False,
        inbrowser=False,
    )