File size: 15,860 Bytes
cf2f35c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import math
import os
import random
import warnings
import librosa
import numpy as np
import torch
from PIL import Image
import cv2
from einops import rearrange
import torchvision.transforms.functional as TF
from torch.utils.data.dataset import Dataset
import torch.nn.functional as F


def get_random_mask(shape, image_start_only=False):
    f, c, h, w = shape
    mask = torch.zeros((f, 1, h, w), dtype=torch.uint8)

    if not image_start_only:
        if f != 1:
            mask_index = np.random.choice([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], p=[0.05, 0.2, 0.2, 0.2, 0.05, 0.05, 0.05, 0.1, 0.05, 0.05])
        else:
            mask_index = np.random.choice([0, 1], p = [0.2, 0.8])
        if mask_index == 0:
            center_x = torch.randint(0, w, (1,)).item()
            center_y = torch.randint(0, h, (1,)).item()
            block_size_x = torch.randint(w // 4, w // 4 * 3, (1,)).item()  # 方块的宽度范围
            block_size_y = torch.randint(h // 4, h // 4 * 3, (1,)).item()  # 方块的高度范围

            start_x = max(center_x - block_size_x // 2, 0)
            end_x = min(center_x + block_size_x // 2, w)
            start_y = max(center_y - block_size_y // 2, 0)
            end_y = min(center_y + block_size_y // 2, h)
            mask[:, :, start_y:end_y, start_x:end_x] = 1
        elif mask_index == 1:
            mask[:, :, :, :] = 1
        elif mask_index == 2:
            mask_frame_index = np.random.randint(1, 5)
            mask[mask_frame_index:, :, :, :] = 1
        elif mask_index == 3:
            mask_frame_index = np.random.randint(1, 5)
            mask[mask_frame_index:-mask_frame_index, :, :, :] = 1
        elif mask_index == 4:
            center_x = torch.randint(0, w, (1,)).item()
            center_y = torch.randint(0, h, (1,)).item()
            block_size_x = torch.randint(w // 4, w // 4 * 3, (1,)).item()  # 方块的宽度范围
            block_size_y = torch.randint(h // 4, h // 4 * 3, (1,)).item()  # 方块的高度范围

            start_x = max(center_x - block_size_x // 2, 0)
            end_x = min(center_x + block_size_x // 2, w)
            start_y = max(center_y - block_size_y // 2, 0)
            end_y = min(center_y + block_size_y // 2, h)

            mask_frame_before = np.random.randint(0, f // 2)
            mask_frame_after = np.random.randint(f // 2, f)
            mask[mask_frame_before:mask_frame_after, :, start_y:end_y, start_x:end_x] = 1
        elif mask_index == 5:
            mask = torch.randint(0, 2, (f, 1, h, w), dtype=torch.uint8)
        elif mask_index == 6:
            num_frames_to_mask = random.randint(1, max(f // 2, 1))
            frames_to_mask = random.sample(range(f), num_frames_to_mask)

            for i in frames_to_mask:
                block_height = random.randint(1, h // 4)
                block_width = random.randint(1, w // 4)
                top_left_y = random.randint(0, h - block_height)
                top_left_x = random.randint(0, w - block_width)
                mask[i, 0, top_left_y:top_left_y + block_height, top_left_x:top_left_x + block_width] = 1
        elif mask_index == 7:
            center_x = torch.randint(0, w, (1,)).item()
            center_y = torch.randint(0, h, (1,)).item()
            a = torch.randint(min(w, h) // 8, min(w, h) // 4, (1,)).item()  # 长半轴
            b = torch.randint(min(h, w) // 8, min(h, w) // 4, (1,)).item()  # 短半轴

            for i in range(h):
                for j in range(w):
                    if ((i - center_y) ** 2) / (b ** 2) + ((j - center_x) ** 2) / (a ** 2) < 1:
                        mask[:, :, i, j] = 1
        elif mask_index == 8:
            center_x = torch.randint(0, w, (1,)).item()
            center_y = torch.randint(0, h, (1,)).item()
            radius = torch.randint(min(h, w) // 8, min(h, w) // 4, (1,)).item()
            for i in range(h):
                for j in range(w):
                    if (i - center_y) ** 2 + (j - center_x) ** 2 < radius ** 2:
                        mask[:, :, i, j] = 1
        elif mask_index == 9:
            for idx in range(f):
                if np.random.rand() > 0.5:
                    mask[idx, :, :, :] = 1
        else:
            raise ValueError(f"The mask_index {mask_index} is not define")
    else:
        if f != 1:
            mask[1:, :, :, :] = 1
        else:
            mask[:, :, :, :] = 1
    return mask


class LargeScaleTalkingFantasyVideos(Dataset):
    def __init__(self, txt_path, width, height, n_sample_frames, sample_frame_rate, only_last_features=False, vocal_encoder=None, audio_encoder=None, vocal_sample_rate=16000, audio_sample_rate=24000, enable_inpaint=True, audio_margin=2, vae_stride=None, patch_size=None, wav2vec_processor=None, wav2vec=None):
        self.txt_path = txt_path
        self.width = width
        self.height = height
        self.n_sample_frames = n_sample_frames
        self.sample_frame_rate = sample_frame_rate
        self.only_last_features = only_last_features
        self.vocal_encoder = vocal_encoder
        self.audio_encoder = audio_encoder
        self.vocal_sample_rate = vocal_sample_rate
        self.audio_sample_rate = audio_sample_rate
        self.enable_inpaint = enable_inpaint
        self.wav2vec_processor = wav2vec_processor
        self.audio_margin = audio_margin
        self.vae_stride = vae_stride
        self.patch_size = patch_size
        self.max_area = height * width
        self.aspect_ratio = height / width
        self.video_files = self._read_txt_file_images()

        self.lat_h = round(
            np.sqrt(self.max_area * self.aspect_ratio) // self.vae_stride[1] //
            self.patch_size[1] * self.patch_size[1])
        self.lat_w = round(
            np.sqrt(self.max_area / self.aspect_ratio) // self.vae_stride[2] //
            self.patch_size[2] * self.patch_size[2])

    def _read_txt_file_images(self):
        with open(self.txt_path, 'r') as file:
            lines = file.readlines()
            video_files = []
            for line in lines:
                video_file = line.strip()
                video_files.append(video_file)
        return video_files

    def __len__(self):
        return len(self.video_files)

    def frame_count(self, frames_path):
        files = os.listdir(frames_path)
        png_files = [file for file in files if file.endswith('.png') or file.endswith('.jpg')]
        png_files_count = len(png_files)
        return png_files_count

    def find_frames_list(self, frames_path):
        files = os.listdir(frames_path)
        image_files = [file for file in files if file.endswith('.png') or file.endswith('.jpg')]
        if image_files[0].startswith('frame_'):
            image_files.sort(key=lambda x: int(x.split('_')[1].split('.')[0]))
        else:
            image_files.sort(key=lambda x: int(x.split('.')[0]))
        return image_files

    def __getitem__(self, idx):
        warnings.filterwarnings('ignore', category=DeprecationWarning)
        warnings.filterwarnings('ignore', category=FutureWarning)

        video_path = os.path.join(self.video_files[idx], "sub_clip.mp4")
        cap = cv2.VideoCapture(video_path)
        fps = cap.get(cv2.CAP_PROP_FPS)
        try:
            is_0_fps = 2 / fps
        except Exception as e:
            print(f"The fps of {video_path} is 0 !!!")
            vocal_audio_path = os.path.join(self.video_files[idx], "audio.wav")
            vocal_duration = librosa.get_duration(filename=vocal_audio_path)
            frames_path = os.path.join(self.video_files[idx], "images")
            total_frame_number = self.frame_count(frames_path)
            fps = total_frame_number / vocal_duration
            print(f"The calculated fps of {video_path} is {fps} !!!")
            # idx = random.randint(0, len(self.video_files) - 1)
            # video_path = os.path.join(self.video_files[idx], "sub_clip.mp4")
            # cap = cv2.VideoCapture(video_path)
            # fps = cap.get(cv2.CAP_PROP_FPS)

        frames_path = os.path.join(self.video_files[idx], "images")

        face_masks_path = os.path.join(self.video_files[idx], "face_masks")
        lip_masks_path = os.path.join(self.video_files[idx], "lip_masks")
        raw_audio_path = os.path.join(self.video_files[idx], "audio.wav")
        # vocal_audio_path = os.path.join(self.video_files[idx], "vocal.wav")
        vocal_audio_path = os.path.join(self.video_files[idx], "audio.wav")
        video_length = self.frame_count(frames_path)
        frames_list = self.find_frames_list(frames_path)

        clip_length = min(video_length, (self.n_sample_frames - 1) * self.sample_frame_rate + 1)

        start_idx = random.randint(0, video_length - clip_length)
        batch_index = np.linspace(
            start_idx, start_idx + clip_length - 1, self.n_sample_frames, dtype=int
        ).tolist()
        all_indices = list(range(0, video_length))
        reference_frame_idx = random.choice(all_indices)

        tgt_pil_image_list = []
        tgt_face_masks_list = []
        tgt_lip_masks_list = []

        # reference_frame_path = os.path.join(frames_path, frames_list[reference_frame_idx])
        reference_frame_path = os.path.join(frames_path, frames_list[start_idx])
        reference_pil_image = Image.open(reference_frame_path).convert('RGB')
        reference_pil_image = reference_pil_image.resize((self.width, self.height))
        reference_pil_image = torch.from_numpy(np.array(reference_pil_image)).float()
        reference_pil_image = reference_pil_image / 127.5 - 1

        for index in batch_index:
            tgt_img_path = os.path.join(frames_path, frames_list[index])
            # file_name = os.path.splitext(os.path.basename(tgt_img_path))[0]
            file_name = os.path.basename(tgt_img_path)
            face_mask_path = os.path.join(face_masks_path, file_name)
            lip_mask_path = os.path.join(lip_masks_path, file_name)
            try:
                tgt_img_pil = Image.open(tgt_img_path).convert('RGB')
            except Exception as e:
                print(f"Fail loading the image: {tgt_img_path}")

            try:
                tgt_lip_mask = Image.open(lip_mask_path)
                # tgt_lip_mask = Image.open(lip_mask_path).convert('RGB')
                tgt_lip_mask = tgt_lip_mask.resize((self.width, self.height))
                tgt_lip_mask = torch.from_numpy(np.array(tgt_lip_mask)).float()
                # tgt_lip_mask = tgt_lip_mask / 127.5 - 1
                tgt_lip_mask = tgt_lip_mask / 255
            except Exception as e:
                print(f"Fail loading the lip masks: {lip_mask_path}")
                tgt_lip_mask = torch.ones(self.height, self.width)
                # tgt_lip_mask = torch.ones(self.height, self.width, 3)
            tgt_lip_masks_list.append(tgt_lip_mask)

            try:
                tgt_face_mask = Image.open(face_mask_path)
                # tgt_face_mask = Image.open(face_mask_path).convert('RGB')
                tgt_face_mask = tgt_face_mask.resize((self.width, self.height))
                tgt_face_mask = torch.from_numpy(np.array(tgt_face_mask)).float()
                tgt_face_mask = tgt_face_mask / 255
                # tgt_face_mask = tgt_face_mask / 127.5 - 1
            except Exception as e:
                print(f"Fail loading the face masks: {face_mask_path}")
                tgt_face_mask = torch.ones(self.height, self.width)
                # tgt_face_mask = torch.ones(self.height, self.width, 3)
            tgt_face_masks_list.append(tgt_face_mask)

            tgt_img_pil = tgt_img_pil.resize((self.width, self.height))
            tgt_img_tensor = torch.from_numpy(np.array(tgt_img_pil)).float()
            tgt_img_normalized = tgt_img_tensor / 127.5 - 1
            tgt_pil_image_list.append(tgt_img_normalized)

        sr = 16000
        vocal_input, sample_rate = librosa.load(vocal_audio_path, sr=sr)
        vocal_duration = librosa.get_duration(filename=vocal_audio_path)
        start_time = batch_index[0] / fps
        end_time = (clip_length / fps) + start_time
        start_sample = int(start_time * sr)
        end_sample = int(end_time * sr)
        try:
            vocal_segment = vocal_input[start_sample:end_sample]
        except:
            print(f"The current vocal segment is too short: {vocal_audio_path}, [{batch_index[0]}, {batch_index[-1]}], fps={fps}, clip_length={clip_length}, vocal_duration={vocal_duration}], [{start_time}, {end_time}]")
            vocal_segment = vocal_input[start_sample:]
        vocal_input_values = self.wav2vec_processor(
            vocal_segment, sampling_rate=sample_rate, return_tensors="pt"
        ).input_values


        tgt_pil_image_list = torch.stack(tgt_pil_image_list, dim=0)
        tgt_pil_image_list = rearrange(tgt_pil_image_list, "f h w c -> f c h w")
        reference_pil_image = rearrange(reference_pil_image, "h w c -> c h w")

        tgt_face_masks_list = torch.stack(tgt_face_masks_list, dim=0)
        tgt_face_masks_list = torch.unsqueeze(tgt_face_masks_list, dim=-1)
        tgt_face_masks_list = rearrange(tgt_face_masks_list, "f h w c -> c f h w")
        tgt_lip_masks_list = torch.stack(tgt_lip_masks_list, dim=0)
        tgt_lip_masks_list = torch.unsqueeze(tgt_lip_masks_list, dim=-1)
        tgt_lip_masks_list = rearrange(tgt_lip_masks_list, "f h w c -> c f h w")


        clip_pixel_values = reference_pil_image.permute(1, 2, 0).contiguous()
        clip_pixel_values = (clip_pixel_values * 0.5 + 0.5) * 255

        cos_similarities = []
        stride = 8
        for i in range(0, tgt_pil_image_list.size()[0] - stride, stride):
            frame1 = tgt_pil_image_list[i]
            frame2 = tgt_pil_image_list[i + stride]
            frame1_flat = frame1.contiguous().view(-1)
            frame2_flat = frame2.contiguous().view(-1)
            cos_sim = F.cosine_similarity(frame1_flat, frame2_flat, dim=0)
            cos_sim = (cos_sim + 1) / 2
            cos_similarities.append(cos_sim.item())
        overall_cos_sim = F.cosine_similarity(tgt_pil_image_list[0].contiguous().view(-1), tgt_pil_image_list[-1].contiguous().view(-1), dim=0)
        overall_cos_sim = (overall_cos_sim + 1) / 2
        cos_similarities.append(overall_cos_sim.item())
        motion_id = (1.0 - sum(cos_similarities) / len(cos_similarities)) * 100


        if "singing" in self.video_files[idx]:
            text_prompt = "The protagonist is singing"
        elif "speech" in self.video_files[idx]:
            text_prompt = "The protagonist is talking"
        elif "dancing" in self.video_files[idx]:
            text_prompt = "The protagonist is simultaneously dancing and singing"
        else:
            text_prompt = ""
            print(1 / 0)

        sample = dict(
            pixel_values=tgt_pil_image_list,
            reference_image=reference_pil_image,
            clip_pixel_values=clip_pixel_values,
            tgt_face_masks=tgt_face_masks_list,
            vocal_input_values=vocal_input_values,
            text_prompt=text_prompt,
            motion_id=motion_id,
            tgt_lip_masks=tgt_lip_masks_list,
            audio_path=raw_audio_path,
        )

        if self.enable_inpaint:
            pixel_value_masks = get_random_mask(tgt_pil_image_list.size(), image_start_only=True)
            masked_pixel_values = tgt_pil_image_list * (1-pixel_value_masks)
            sample["masked_pixel_values"] = masked_pixel_values
            sample["pixel_value_masks"] = pixel_value_masks


        return sample