Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,860 Bytes
cf2f35c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import math
import os
import random
import warnings
import librosa
import numpy as np
import torch
from PIL import Image
import cv2
from einops import rearrange
import torchvision.transforms.functional as TF
from torch.utils.data.dataset import Dataset
import torch.nn.functional as F
def get_random_mask(shape, image_start_only=False):
f, c, h, w = shape
mask = torch.zeros((f, 1, h, w), dtype=torch.uint8)
if not image_start_only:
if f != 1:
mask_index = np.random.choice([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], p=[0.05, 0.2, 0.2, 0.2, 0.05, 0.05, 0.05, 0.1, 0.05, 0.05])
else:
mask_index = np.random.choice([0, 1], p = [0.2, 0.8])
if mask_index == 0:
center_x = torch.randint(0, w, (1,)).item()
center_y = torch.randint(0, h, (1,)).item()
block_size_x = torch.randint(w // 4, w // 4 * 3, (1,)).item() # 方块的宽度范围
block_size_y = torch.randint(h // 4, h // 4 * 3, (1,)).item() # 方块的高度范围
start_x = max(center_x - block_size_x // 2, 0)
end_x = min(center_x + block_size_x // 2, w)
start_y = max(center_y - block_size_y // 2, 0)
end_y = min(center_y + block_size_y // 2, h)
mask[:, :, start_y:end_y, start_x:end_x] = 1
elif mask_index == 1:
mask[:, :, :, :] = 1
elif mask_index == 2:
mask_frame_index = np.random.randint(1, 5)
mask[mask_frame_index:, :, :, :] = 1
elif mask_index == 3:
mask_frame_index = np.random.randint(1, 5)
mask[mask_frame_index:-mask_frame_index, :, :, :] = 1
elif mask_index == 4:
center_x = torch.randint(0, w, (1,)).item()
center_y = torch.randint(0, h, (1,)).item()
block_size_x = torch.randint(w // 4, w // 4 * 3, (1,)).item() # 方块的宽度范围
block_size_y = torch.randint(h // 4, h // 4 * 3, (1,)).item() # 方块的高度范围
start_x = max(center_x - block_size_x // 2, 0)
end_x = min(center_x + block_size_x // 2, w)
start_y = max(center_y - block_size_y // 2, 0)
end_y = min(center_y + block_size_y // 2, h)
mask_frame_before = np.random.randint(0, f // 2)
mask_frame_after = np.random.randint(f // 2, f)
mask[mask_frame_before:mask_frame_after, :, start_y:end_y, start_x:end_x] = 1
elif mask_index == 5:
mask = torch.randint(0, 2, (f, 1, h, w), dtype=torch.uint8)
elif mask_index == 6:
num_frames_to_mask = random.randint(1, max(f // 2, 1))
frames_to_mask = random.sample(range(f), num_frames_to_mask)
for i in frames_to_mask:
block_height = random.randint(1, h // 4)
block_width = random.randint(1, w // 4)
top_left_y = random.randint(0, h - block_height)
top_left_x = random.randint(0, w - block_width)
mask[i, 0, top_left_y:top_left_y + block_height, top_left_x:top_left_x + block_width] = 1
elif mask_index == 7:
center_x = torch.randint(0, w, (1,)).item()
center_y = torch.randint(0, h, (1,)).item()
a = torch.randint(min(w, h) // 8, min(w, h) // 4, (1,)).item() # 长半轴
b = torch.randint(min(h, w) // 8, min(h, w) // 4, (1,)).item() # 短半轴
for i in range(h):
for j in range(w):
if ((i - center_y) ** 2) / (b ** 2) + ((j - center_x) ** 2) / (a ** 2) < 1:
mask[:, :, i, j] = 1
elif mask_index == 8:
center_x = torch.randint(0, w, (1,)).item()
center_y = torch.randint(0, h, (1,)).item()
radius = torch.randint(min(h, w) // 8, min(h, w) // 4, (1,)).item()
for i in range(h):
for j in range(w):
if (i - center_y) ** 2 + (j - center_x) ** 2 < radius ** 2:
mask[:, :, i, j] = 1
elif mask_index == 9:
for idx in range(f):
if np.random.rand() > 0.5:
mask[idx, :, :, :] = 1
else:
raise ValueError(f"The mask_index {mask_index} is not define")
else:
if f != 1:
mask[1:, :, :, :] = 1
else:
mask[:, :, :, :] = 1
return mask
class LargeScaleTalkingFantasyVideos(Dataset):
def __init__(self, txt_path, width, height, n_sample_frames, sample_frame_rate, only_last_features=False, vocal_encoder=None, audio_encoder=None, vocal_sample_rate=16000, audio_sample_rate=24000, enable_inpaint=True, audio_margin=2, vae_stride=None, patch_size=None, wav2vec_processor=None, wav2vec=None):
self.txt_path = txt_path
self.width = width
self.height = height
self.n_sample_frames = n_sample_frames
self.sample_frame_rate = sample_frame_rate
self.only_last_features = only_last_features
self.vocal_encoder = vocal_encoder
self.audio_encoder = audio_encoder
self.vocal_sample_rate = vocal_sample_rate
self.audio_sample_rate = audio_sample_rate
self.enable_inpaint = enable_inpaint
self.wav2vec_processor = wav2vec_processor
self.audio_margin = audio_margin
self.vae_stride = vae_stride
self.patch_size = patch_size
self.max_area = height * width
self.aspect_ratio = height / width
self.video_files = self._read_txt_file_images()
self.lat_h = round(
np.sqrt(self.max_area * self.aspect_ratio) // self.vae_stride[1] //
self.patch_size[1] * self.patch_size[1])
self.lat_w = round(
np.sqrt(self.max_area / self.aspect_ratio) // self.vae_stride[2] //
self.patch_size[2] * self.patch_size[2])
def _read_txt_file_images(self):
with open(self.txt_path, 'r') as file:
lines = file.readlines()
video_files = []
for line in lines:
video_file = line.strip()
video_files.append(video_file)
return video_files
def __len__(self):
return len(self.video_files)
def frame_count(self, frames_path):
files = os.listdir(frames_path)
png_files = [file for file in files if file.endswith('.png') or file.endswith('.jpg')]
png_files_count = len(png_files)
return png_files_count
def find_frames_list(self, frames_path):
files = os.listdir(frames_path)
image_files = [file for file in files if file.endswith('.png') or file.endswith('.jpg')]
if image_files[0].startswith('frame_'):
image_files.sort(key=lambda x: int(x.split('_')[1].split('.')[0]))
else:
image_files.sort(key=lambda x: int(x.split('.')[0]))
return image_files
def __getitem__(self, idx):
warnings.filterwarnings('ignore', category=DeprecationWarning)
warnings.filterwarnings('ignore', category=FutureWarning)
video_path = os.path.join(self.video_files[idx], "sub_clip.mp4")
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
try:
is_0_fps = 2 / fps
except Exception as e:
print(f"The fps of {video_path} is 0 !!!")
vocal_audio_path = os.path.join(self.video_files[idx], "audio.wav")
vocal_duration = librosa.get_duration(filename=vocal_audio_path)
frames_path = os.path.join(self.video_files[idx], "images")
total_frame_number = self.frame_count(frames_path)
fps = total_frame_number / vocal_duration
print(f"The calculated fps of {video_path} is {fps} !!!")
# idx = random.randint(0, len(self.video_files) - 1)
# video_path = os.path.join(self.video_files[idx], "sub_clip.mp4")
# cap = cv2.VideoCapture(video_path)
# fps = cap.get(cv2.CAP_PROP_FPS)
frames_path = os.path.join(self.video_files[idx], "images")
face_masks_path = os.path.join(self.video_files[idx], "face_masks")
lip_masks_path = os.path.join(self.video_files[idx], "lip_masks")
raw_audio_path = os.path.join(self.video_files[idx], "audio.wav")
# vocal_audio_path = os.path.join(self.video_files[idx], "vocal.wav")
vocal_audio_path = os.path.join(self.video_files[idx], "audio.wav")
video_length = self.frame_count(frames_path)
frames_list = self.find_frames_list(frames_path)
clip_length = min(video_length, (self.n_sample_frames - 1) * self.sample_frame_rate + 1)
start_idx = random.randint(0, video_length - clip_length)
batch_index = np.linspace(
start_idx, start_idx + clip_length - 1, self.n_sample_frames, dtype=int
).tolist()
all_indices = list(range(0, video_length))
reference_frame_idx = random.choice(all_indices)
tgt_pil_image_list = []
tgt_face_masks_list = []
tgt_lip_masks_list = []
# reference_frame_path = os.path.join(frames_path, frames_list[reference_frame_idx])
reference_frame_path = os.path.join(frames_path, frames_list[start_idx])
reference_pil_image = Image.open(reference_frame_path).convert('RGB')
reference_pil_image = reference_pil_image.resize((self.width, self.height))
reference_pil_image = torch.from_numpy(np.array(reference_pil_image)).float()
reference_pil_image = reference_pil_image / 127.5 - 1
for index in batch_index:
tgt_img_path = os.path.join(frames_path, frames_list[index])
# file_name = os.path.splitext(os.path.basename(tgt_img_path))[0]
file_name = os.path.basename(tgt_img_path)
face_mask_path = os.path.join(face_masks_path, file_name)
lip_mask_path = os.path.join(lip_masks_path, file_name)
try:
tgt_img_pil = Image.open(tgt_img_path).convert('RGB')
except Exception as e:
print(f"Fail loading the image: {tgt_img_path}")
try:
tgt_lip_mask = Image.open(lip_mask_path)
# tgt_lip_mask = Image.open(lip_mask_path).convert('RGB')
tgt_lip_mask = tgt_lip_mask.resize((self.width, self.height))
tgt_lip_mask = torch.from_numpy(np.array(tgt_lip_mask)).float()
# tgt_lip_mask = tgt_lip_mask / 127.5 - 1
tgt_lip_mask = tgt_lip_mask / 255
except Exception as e:
print(f"Fail loading the lip masks: {lip_mask_path}")
tgt_lip_mask = torch.ones(self.height, self.width)
# tgt_lip_mask = torch.ones(self.height, self.width, 3)
tgt_lip_masks_list.append(tgt_lip_mask)
try:
tgt_face_mask = Image.open(face_mask_path)
# tgt_face_mask = Image.open(face_mask_path).convert('RGB')
tgt_face_mask = tgt_face_mask.resize((self.width, self.height))
tgt_face_mask = torch.from_numpy(np.array(tgt_face_mask)).float()
tgt_face_mask = tgt_face_mask / 255
# tgt_face_mask = tgt_face_mask / 127.5 - 1
except Exception as e:
print(f"Fail loading the face masks: {face_mask_path}")
tgt_face_mask = torch.ones(self.height, self.width)
# tgt_face_mask = torch.ones(self.height, self.width, 3)
tgt_face_masks_list.append(tgt_face_mask)
tgt_img_pil = tgt_img_pil.resize((self.width, self.height))
tgt_img_tensor = torch.from_numpy(np.array(tgt_img_pil)).float()
tgt_img_normalized = tgt_img_tensor / 127.5 - 1
tgt_pil_image_list.append(tgt_img_normalized)
sr = 16000
vocal_input, sample_rate = librosa.load(vocal_audio_path, sr=sr)
vocal_duration = librosa.get_duration(filename=vocal_audio_path)
start_time = batch_index[0] / fps
end_time = (clip_length / fps) + start_time
start_sample = int(start_time * sr)
end_sample = int(end_time * sr)
try:
vocal_segment = vocal_input[start_sample:end_sample]
except:
print(f"The current vocal segment is too short: {vocal_audio_path}, [{batch_index[0]}, {batch_index[-1]}], fps={fps}, clip_length={clip_length}, vocal_duration={vocal_duration}], [{start_time}, {end_time}]")
vocal_segment = vocal_input[start_sample:]
vocal_input_values = self.wav2vec_processor(
vocal_segment, sampling_rate=sample_rate, return_tensors="pt"
).input_values
tgt_pil_image_list = torch.stack(tgt_pil_image_list, dim=0)
tgt_pil_image_list = rearrange(tgt_pil_image_list, "f h w c -> f c h w")
reference_pil_image = rearrange(reference_pil_image, "h w c -> c h w")
tgt_face_masks_list = torch.stack(tgt_face_masks_list, dim=0)
tgt_face_masks_list = torch.unsqueeze(tgt_face_masks_list, dim=-1)
tgt_face_masks_list = rearrange(tgt_face_masks_list, "f h w c -> c f h w")
tgt_lip_masks_list = torch.stack(tgt_lip_masks_list, dim=0)
tgt_lip_masks_list = torch.unsqueeze(tgt_lip_masks_list, dim=-1)
tgt_lip_masks_list = rearrange(tgt_lip_masks_list, "f h w c -> c f h w")
clip_pixel_values = reference_pil_image.permute(1, 2, 0).contiguous()
clip_pixel_values = (clip_pixel_values * 0.5 + 0.5) * 255
cos_similarities = []
stride = 8
for i in range(0, tgt_pil_image_list.size()[0] - stride, stride):
frame1 = tgt_pil_image_list[i]
frame2 = tgt_pil_image_list[i + stride]
frame1_flat = frame1.contiguous().view(-1)
frame2_flat = frame2.contiguous().view(-1)
cos_sim = F.cosine_similarity(frame1_flat, frame2_flat, dim=0)
cos_sim = (cos_sim + 1) / 2
cos_similarities.append(cos_sim.item())
overall_cos_sim = F.cosine_similarity(tgt_pil_image_list[0].contiguous().view(-1), tgt_pil_image_list[-1].contiguous().view(-1), dim=0)
overall_cos_sim = (overall_cos_sim + 1) / 2
cos_similarities.append(overall_cos_sim.item())
motion_id = (1.0 - sum(cos_similarities) / len(cos_similarities)) * 100
if "singing" in self.video_files[idx]:
text_prompt = "The protagonist is singing"
elif "speech" in self.video_files[idx]:
text_prompt = "The protagonist is talking"
elif "dancing" in self.video_files[idx]:
text_prompt = "The protagonist is simultaneously dancing and singing"
else:
text_prompt = ""
print(1 / 0)
sample = dict(
pixel_values=tgt_pil_image_list,
reference_image=reference_pil_image,
clip_pixel_values=clip_pixel_values,
tgt_face_masks=tgt_face_masks_list,
vocal_input_values=vocal_input_values,
text_prompt=text_prompt,
motion_id=motion_id,
tgt_lip_masks=tgt_lip_masks_list,
audio_path=raw_audio_path,
)
if self.enable_inpaint:
pixel_value_masks = get_random_mask(tgt_pil_image_list.size(), image_start_only=True)
masked_pixel_values = tgt_pil_image_list * (1-pixel_value_masks)
sample["masked_pixel_values"] = masked_pixel_values
sample["pixel_value_masks"] = pixel_value_masks
return sample |