File size: 1,949 Bytes
cf2f35c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import torch
import torch.distributed as dist

try:
    import xfuser
    from xfuser.core.distributed import (get_sequence_parallel_rank,
                                         get_sequence_parallel_world_size,
                                         get_sp_group, get_world_group,
                                         init_distributed_environment,
                                         initialize_model_parallel)
    from xfuser.core.long_ctx_attention import xFuserLongContextAttention
except Exception as ex:
    get_sequence_parallel_world_size = None
    get_sequence_parallel_rank = None
    xFuserLongContextAttention = None
    get_sp_group = None
    get_world_group = None
    init_distributed_environment = None
    initialize_model_parallel = None

def set_multi_gpus_devices(ulysses_degree, ring_degree):
    if ulysses_degree > 1 or ring_degree > 1:
        if get_sp_group is None:
            raise RuntimeError("xfuser is not installed.")
        dist.init_process_group("nccl")
        print('parallel inference enabled: ulysses_degree=%d ring_degree=%d rank=%d world_size=%d' % (
            ulysses_degree, ring_degree, dist.get_rank(),
            dist.get_world_size()))
        assert dist.get_world_size() == ring_degree * ulysses_degree, \
                    "number of GPUs(%d) should be equal to ring_degree * ulysses_degree." % dist.get_world_size()
        init_distributed_environment(rank=dist.get_rank(), world_size=dist.get_world_size())
        initialize_model_parallel(sequence_parallel_degree=dist.get_world_size(),
                ring_degree=ring_degree,
                ulysses_degree=ulysses_degree)
        # device = torch.device("cuda:%d" % dist.get_rank())
        device = torch.device(f"cuda:{get_world_group().local_rank}")
        print('rank=%d device=%s' % (get_world_group().rank, str(device)))
    else:
        device = "cuda"
    return device