Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,433 Bytes
cf2f35c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import torch
import torch.nn as nn
def sinusoidal_embedding_1d(dim, position):
sinusoid = torch.outer(position.type(torch.float64), torch.pow(10000, -torch.arange(dim//2, dtype=torch.float64, device=position.device).div(dim//2)))
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
return x.to(position.dtype)
class WanMotionControllerModel(torch.nn.Module):
def __init__(self, freq_dim=256, dim=1536):
super().__init__()
self.freq_dim = freq_dim
self.linear = nn.Sequential(
nn.Linear(freq_dim, dim),
nn.SiLU(),
nn.Linear(dim, dim),
nn.SiLU(),
nn.Linear(dim, dim * 6),
)
self.init_weight()
def forward(self, motion_bucket_id):
emb = sinusoidal_embedding_1d(self.freq_dim, motion_bucket_id * 10)
emb = self.linear(emb)
return emb
def init_weight(self):
state_dict = self.linear[-1].state_dict()
state_dict = {i: state_dict[i] * 0 for i in state_dict}
self.linear[-1].load_state_dict(state_dict)
if __name__ == "__main__":
dim = 1536
motion_controller = WanMotionControllerModel()
motion_bucket_id = 100.0
motion_bucket_id = torch.Tensor((motion_bucket_id,)).to(dtype=torch.float32, device='cpu')
out = motion_controller(motion_bucket_id).unflatten(1, (6, dim))
print(out.size()) |