Spaces:
Running
on
Zero
Running
on
Zero
File size: 53,595 Bytes
cf2f35c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 |
# Modified from https://github.com/Wan-Video/Wan2.1/blob/main/wan/modules/model.py
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import glob
import json
import math
import os
import types
import warnings
from typing import Any, Dict, Optional, Union
import numpy as np
import torch
import torch.amp as amp
import torch.nn as nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders.single_file_model import FromOriginalModelMixin
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import is_torch_version, logging
from torch import nn
from einops import rearrange
from ..dist import (get_sequence_parallel_rank,
get_sequence_parallel_world_size, get_sp_group,
xFuserLongContextAttention)
from .cache_utils import TeaCache
from ..dist.wan_xfuser import usp_attn_forward
try:
import flash_attn_interface
FLASH_ATTN_3_AVAILABLE = True
except ModuleNotFoundError:
FLASH_ATTN_3_AVAILABLE = False
try:
import flash_attn
FLASH_ATTN_2_AVAILABLE = True
except ModuleNotFoundError:
FLASH_ATTN_2_AVAILABLE = False
# if FLASH_ATTN_2_AVAILABLE is False and FLASH_ATTN_3_AVAILABLE is False:
# print(1/0)
def flash_attention(
q,
k,
v,
q_lens=None,
k_lens=None,
dropout_p=0.,
softmax_scale=None,
q_scale=None,
causal=False,
window_size=(-1, -1),
deterministic=False,
dtype=torch.bfloat16,
version=None,
):
"""
q: [B, Lq, Nq, C1].
k: [B, Lk, Nk, C1].
v: [B, Lk, Nk, C2]. Nq must be divisible by Nk.
q_lens: [B].
k_lens: [B].
dropout_p: float. Dropout probability.
softmax_scale: float. The scaling of QK^T before applying softmax.
causal: bool. Whether to apply causal attention mask.
window_size: (left right). If not (-1, -1), apply sliding window local attention.
deterministic: bool. If True, slightly slower and uses more memory.
dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16.
"""
half_dtypes = (torch.float16, torch.bfloat16)
assert dtype in half_dtypes
assert q.device.type == 'cuda' and q.size(-1) <= 256
# params
b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype
def half(x):
return x if x.dtype in half_dtypes else x.to(dtype)
# preprocess query
if q_lens is None:
q = half(q.flatten(0, 1))
q_lens = torch.tensor(
[lq] * b, dtype=torch.int32).to(
device=q.device, non_blocking=True)
else:
q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)]))
# preprocess key, value
if k_lens is None:
k = half(k.flatten(0, 1))
v = half(v.flatten(0, 1))
k_lens = torch.tensor(
[lk] * b, dtype=torch.int32).to(
device=k.device, non_blocking=True)
else:
k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)]))
v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)]))
q = q.to(v.dtype)
k = k.to(v.dtype)
if q_scale is not None:
q = q * q_scale
if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE:
warnings.warn(
'Flash attention 3 is not available, use flash attention 2 instead.'
)
# apply attention
if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE:
# Note: dropout_p, window_size are not supported in FA3 now.
x = flash_attn_interface.flash_attn_varlen_func(
q=q,
k=k,
v=v,
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
0, dtype=torch.int32).to(q.device, non_blocking=True),
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
0, dtype=torch.int32).to(q.device, non_blocking=True),
seqused_q=None,
seqused_k=None,
max_seqlen_q=lq,
max_seqlen_k=lk,
softmax_scale=softmax_scale,
causal=causal,
deterministic=deterministic)[0].unflatten(0, (b, lq))
else:
assert FLASH_ATTN_2_AVAILABLE
x = flash_attn.flash_attn_varlen_func(
q=q,
k=k,
v=v,
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
0, dtype=torch.int32).to(q.device, non_blocking=True),
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
0, dtype=torch.int32).to(q.device, non_blocking=True),
max_seqlen_q=lq,
max_seqlen_k=lk,
dropout_p=dropout_p,
softmax_scale=softmax_scale,
causal=causal,
window_size=window_size,
deterministic=deterministic).unflatten(0, (b, lq))
# output
return x.type(out_dtype)
def attention(
q,
k,
v,
q_lens=None,
k_lens=None,
dropout_p=0.,
softmax_scale=None,
q_scale=None,
causal=False,
window_size=(-1, -1),
deterministic=False,
dtype=torch.bfloat16,
fa_version=None,
):
if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE:
return flash_attention(
q=q,
k=k,
v=v,
q_lens=q_lens,
k_lens=k_lens,
dropout_p=dropout_p,
softmax_scale=softmax_scale,
q_scale=q_scale,
causal=causal,
window_size=window_size,
deterministic=deterministic,
dtype=dtype,
version=fa_version,
)
else:
if q_lens is not None or k_lens is not None:
warnings.warn(
'Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.'
)
attn_mask = None
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
if torch.backends.cuda.flash_sdp_enabled() is False or torch.backends.cuda.enable_flash_sdp is False:
print(1/0)
out = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p)
out = out.transpose(1, 2).contiguous()
return out
def sinusoidal_embedding_1d(dim, position):
# preprocess
assert dim % 2 == 0
half = dim // 2
position = position.type(torch.float64)
# calculation
sinusoid = torch.outer(
position, torch.pow(10000, -torch.arange(half).to(position).div(half)))
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
return x
@amp.autocast('cuda', enabled=False)
def rope_params(max_seq_len, dim, theta=10000):
assert dim % 2 == 0
freqs = torch.outer(
torch.arange(max_seq_len),
1.0 / torch.pow(theta,
torch.arange(0, dim, 2).to(torch.float64).div(dim)))
freqs = torch.polar(torch.ones_like(freqs), freqs)
return freqs
# modified from https://github.com/thu-ml/RIFLEx/blob/main/riflex_utils.py
@amp.autocast('cuda', enabled=False)
def get_1d_rotary_pos_embed_riflex(
pos: Union[np.ndarray, int],
dim: int,
theta: float = 10000.0,
use_real=False,
k: Optional[int] = None,
L_test: Optional[int] = None,
L_test_scale: Optional[int] = None,
):
"""
RIFLEx: Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' and the end
index 'end'. The 'theta' parameter scales the frequencies. The returned tensor contains complex values in complex64
data type.
Args:
dim (`int`): Dimension of the frequency tensor.
pos (`np.ndarray` or `int`): Position indices for the frequency tensor. [S] or scalar
theta (`float`, *optional*, defaults to 10000.0):
Scaling factor for frequency computation. Defaults to 10000.0.
use_real (`bool`, *optional*):
If True, return real part and imaginary part separately. Otherwise, return complex numbers.
k (`int`, *optional*, defaults to None): the index for the intrinsic frequency in RoPE
L_test (`int`, *optional*, defaults to None): the number of frames for inference
Returns:
`torch.Tensor`: Precomputed frequency tensor with complex exponentials. [S, D/2]
"""
assert dim % 2 == 0
if isinstance(pos, int):
pos = torch.arange(pos)
if isinstance(pos, np.ndarray):
pos = torch.from_numpy(pos) # type: ignore # [S]
freqs = 1.0 / torch.pow(theta,
torch.arange(0, dim, 2).to(torch.float64).div(dim))
# === Riflex modification start ===
# Reduce the intrinsic frequency to stay within a single period after extrapolation (see Eq. (8)).
# Empirical observations show that a few videos may exhibit repetition in the tail frames.
# To be conservative, we multiply by 0.9 to keep the extrapolated length below 90% of a single period.
if k is not None:
freqs[k-1] = 0.9 * 2 * torch.pi / L_test
# === Riflex modification end ===
if L_test_scale is not None:
freqs[k-1] = freqs[k-1] / L_test_scale
freqs = torch.outer(pos, freqs) # type: ignore # [S, D/2]
if use_real:
freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() # [S, D]
freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float() # [S, D]
return freqs_cos, freqs_sin
else:
# lumina
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2]
return freqs_cis
@amp.autocast('cuda', enabled=False)
def rope_apply(x, grid_sizes, freqs):
n, c = x.size(2), x.size(3) // 2
# split freqs
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
# loop over samples
output = []
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
seq_len = f * h * w
# precompute multipliers
x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float32).reshape(
seq_len, n, -1, 2))
freqs_i = torch.cat([
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
],
dim=-1).reshape(seq_len, 1, -1)
# apply rotary embedding
x_i = torch.view_as_real(x_i * freqs_i).flatten(2)
x_i = torch.cat([x_i, x[i, seq_len:]])
# append to collection
output.append(x_i)
return torch.stack(output).float()
class WanRMSNorm(nn.Module):
def __init__(self, dim, eps=1e-5):
super().__init__()
self.dim = dim
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def forward(self, x):
r"""
Args:
x(Tensor): Shape [B, L, C]
"""
return self._norm(x.float()).type_as(x) * self.weight
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps)
class WanLayerNorm(nn.LayerNorm):
def __init__(self, dim, eps=1e-6, elementwise_affine=False):
super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps)
def forward(self, x):
r"""
Args:
x(Tensor): Shape [B, L, C]
"""
return super().forward(x.float()).type_as(x)
class WanSelfAttention(nn.Module):
def __init__(self,
dim,
num_heads,
window_size=(-1, -1),
qk_norm=True,
eps=1e-6):
assert dim % num_heads == 0
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.window_size = window_size
self.qk_norm = qk_norm
self.eps = eps
# layers
self.q = nn.Linear(dim, dim)
self.k = nn.Linear(dim, dim)
self.v = nn.Linear(dim, dim)
self.o = nn.Linear(dim, dim)
self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
def forward(self, x, seq_lens, grid_sizes, freqs, dtype):
r"""
Args:
x(Tensor): Shape [B, L, num_heads, C / num_heads]
seq_lens(Tensor): Shape [B]
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
"""
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
# query, key, value function
def qkv_fn(x):
q = self.norm_q(self.q(x.to(dtype))).view(b, s, n, d)
k = self.norm_k(self.k(x.to(dtype))).view(b, s, n, d)
v = self.v(x.to(dtype)).view(b, s, n, d)
return q, k, v
q, k, v = qkv_fn(x)
x = attention(
q=rope_apply(q, grid_sizes, freqs).to(dtype),
k=rope_apply(k, grid_sizes, freqs).to(dtype),
v=v.to(dtype),
k_lens=seq_lens,
window_size=self.window_size)
x = x.to(dtype)
# output
x = x.flatten(2)
x = self.o(x)
return x
class WanT2VCrossAttention(WanSelfAttention):
def forward(self, x, context, context_lens, dtype):
r"""
Args:
x(Tensor): Shape [B, L1, C]
context(Tensor): Shape [B, L2, C]
context_lens(Tensor): Shape [B]
"""
b, n, d = x.size(0), self.num_heads, self.head_dim
# compute query, key, value
q = self.norm_q(self.q(x.to(dtype))).view(b, -1, n, d)
k = self.norm_k(self.k(context.to(dtype))).view(b, -1, n, d)
v = self.v(context.to(dtype)).view(b, -1, n, d)
# compute attention
x = attention(
q.to(dtype),
k.to(dtype),
v.to(dtype),
k_lens=context_lens
)
x = x.to(dtype)
# output
x = x.flatten(2)
x = self.o(x)
return x
class WanI2VCrossAttention(WanSelfAttention):
def __init__(self,
dim,
num_heads,
window_size=(-1, -1),
qk_norm=True,
eps=1e-6):
super().__init__(dim, num_heads, window_size, qk_norm, eps)
# self.alpha = nn.Parameter(torch.zeros((1, )))
self.k_img = nn.Linear(dim, dim)
self.v_img = nn.Linear(dim, dim)
self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
def forward(self, x, context, context_lens, dtype):
r"""
Args:
x(Tensor): Shape [B, L1, C]
context(Tensor): Shape [B, L2, C]
context_lens(Tensor): Shape [B]
"""
context_img = context[:, :257]
context = context[:, 257:]
b, n, d = x.size(0), self.num_heads, self.head_dim
# compute query, key, value
q = self.norm_q(self.q(x.to(dtype))).view(b, -1, n, d)
k = self.norm_k(self.k(context.to(dtype))).view(b, -1, n, d)
v = self.v(context.to(dtype)).view(b, -1, n, d)
k_img = self.norm_k_img(self.k_img(context_img.to(dtype))).view(b, -1, n, d)
v_img = self.v_img(context_img.to(dtype)).view(b, -1, n, d)
img_x = attention(
q.to(dtype),
k_img.to(dtype),
v_img.to(dtype),
k_lens=None
)
img_x = img_x.to(dtype)
# compute attention
x = attention(
q.to(dtype),
k.to(dtype),
v.to(dtype),
k_lens=context_lens
)
x = x.to(dtype)
# output
x = x.flatten(2)
img_x = img_x.flatten(2)
x = x + img_x
x = self.o(x)
return x
class WanI2VTalkingCrossAttention(WanSelfAttention):
def __init__(self,
dim,
num_heads,
window_size=(-1, -1),
qk_norm=True,
eps=1e-6):
super().__init__(dim, num_heads, window_size, qk_norm, eps)
# self.alpha = nn.Parameter(torch.zeros((1, )))
self.k_img = nn.Linear(dim, dim)
self.v_img = nn.Linear(dim, dim)
self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
self.k_vocal = nn.Linear(dim, dim)
self.v_vocal = nn.Linear(dim, dim)
self.norm_k_vocal = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
self.k_audio = nn.Linear(dim, dim)
self.v_audio = nn.Linear(dim, dim)
self.norm_k_audio = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
def forward(self, x, context, context_lens, dtype):
r"""
Args:
x(Tensor): Shape [B, L1, C]
context(Tensor): Shape [B, L2, C]
context_lens(Tensor): Shape [B]
"""
# print(f"The size of x in cross attention: {x.size()}") # [1, 21504, 5120]
# print(f"The size of context_clip in cross attention: {context_img.size()}") # [1, 257, 5120]
context_img = context[:, :257]
context_vocal = context[:, 257:(257+21*32)]
context_audio = context[:, (257+21*32):(257+21*32*2)]
context = context[:, (257+21*32*2):]
b, n, d = x.size(0), self.num_heads, self.head_dim
# compute query, key, value
q = self.norm_q(self.q(x.to(dtype))).view(b, -1, n, d)
k = self.norm_k(self.k(context.to(dtype))).view(b, -1, n, d)
v = self.v(context.to(dtype)).view(b, -1, n, d)
k_img = self.norm_k_img(self.k_img(context_img.to(dtype))).view(b, -1, n, d)
v_img = self.v_img(context_img.to(dtype)).view(b, -1, n, d)
img_x = attention(
q.to(dtype),
k_img.to(dtype),
v_img.to(dtype),
k_lens=None
)
img_x = img_x.to(dtype)
# compute attention
x = attention(
q.to(dtype),
k.to(dtype),
v.to(dtype),
k_lens=context_lens
)
x = x.to(dtype)
k_vocal = self.norm_k_vocal(self.k_vocal(context_vocal.to(dtype))).view(b, -1, n, d)
v_vocal = self.v_vocal(context_vocal.to(dtype)).view(b, -1, n, d)
vocal_x = attention(
q.to(dtype),
k_vocal.to(dtype),
v_vocal.to(dtype),
k_lens=context_lens
)
vocal_x = vocal_x.to(dtype)
compressed_frame_number = 21
q = rearrange(q, "b (f n) h d -> (b f) n h d", f=compressed_frame_number)
context_audio = rearrange(context_audio, "b (f n) d -> (b f) n d", f=compressed_frame_number)
k_audio = self.norm_k_audio(self.k_audio(context_audio.to(dtype))).view(b*compressed_frame_number, -1, self.num_heads, self.head_dim)
v_audio = self.v_audio(context_audio.to(dtype)).view(b*compressed_frame_number, -1, self.num_heads, self.head_dim)
# k_audio = self.norm_k_audio(self.k_audio(context_audio.to(dtype))).view(b, -1, n, d)
# v_audio = self.v_audio(context_audio.to(dtype)).view(b, -1, n, d)
audio_x = attention(
q.to(dtype),
k_audio.to(dtype),
v_audio.to(dtype),
k_lens=context_lens
)
audio_x = audio_x.to(dtype)
audio_x = rearrange(audio_x, "(b f) n h d -> b (f n) h d", f=compressed_frame_number)
# print(f"The size of context: {context.size()}") # [1, 512, 5120]
# print(f"The size of context_vocal: {context_vocal.size()}") # [1, 672, 5120]
# print(f"The size of context_audio: {context_audio.size()}") # [1, 672, 5120]
# print(f"The size of vocal_x: {vocal_x.size()}") # [1, 21504, 40, 128]
# print(f"The size of audio_x: {audio_x.size()}") # [1, 21504, 40, 128]
# print(f"The size of face_masks: {face_masks.size()}") # [1, 21504, 5120]
# print(f"The size of negative_face_masks: {negative_face_masks.size()}") # [1, 21504, 5120]
# output
x = x.flatten(2)
img_x = img_x.flatten(2)
vocal_x = vocal_x.flatten(2)
audio_x = audio_x.flatten(2)
x = x + img_x + vocal_x + audio_x
x = self.o(x)
return x
WAN_CROSSATTENTION_CLASSES = {
't2v_cross_attn': WanT2VCrossAttention,
'i2v_cross_attn': WanI2VCrossAttention,
}
class WanAttentionBlock(nn.Module):
def __init__(self,
cross_attn_type,
dim,
ffn_dim,
num_heads,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=False,
eps=1e-6):
super().__init__()
self.dim = dim
self.ffn_dim = ffn_dim
self.num_heads = num_heads
self.window_size = window_size
self.qk_norm = qk_norm
self.cross_attn_norm = cross_attn_norm
self.eps = eps
# layers
self.norm1 = WanLayerNorm(dim, eps)
self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm,
eps)
self.norm3 = WanLayerNorm(
dim, eps,
elementwise_affine=True) if cross_attn_norm else nn.Identity()
# self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim, num_heads, (-1, -1), qk_norm, eps)
self.cross_attn = WanI2VTalkingCrossAttention(dim, num_heads, (-1, -1), qk_norm, eps)
self.norm2 = WanLayerNorm(dim, eps)
self.ffn = nn.Sequential(
nn.Linear(dim, ffn_dim), nn.GELU(approximate='tanh'),
nn.Linear(ffn_dim, dim))
# modulation
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
def forward(
self,
x,
e,
seq_lens,
grid_sizes,
freqs,
context,
context_lens,
dtype=torch.float32,
):
r"""
Args:
x(Tensor): Shape [B, L, C]
e(Tensor): Shape [B, 6, C]
seq_lens(Tensor): Shape [B], length of each sequence in batch
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
"""
e = (self.modulation + e).chunk(6, dim=1)
# self-attention
temp_x = self.norm1(x) * (1 + e[1]) + e[0]
temp_x = temp_x.to(dtype)
y = self.self_attn(temp_x, seq_lens, grid_sizes, freqs, dtype)
x = x + y * e[2]
# cross-attention & ffn function
def cross_attn_ffn(x, context, context_lens, e):
# cross-attention
x = x + self.cross_attn(self.norm3(x), context, context_lens, dtype)
# ffn function
temp_x = self.norm2(x) * (1 + e[4]) + e[3]
temp_x = temp_x.to(dtype)
y = self.ffn(temp_x)
x = x + y * e[5]
return x
x = cross_attn_ffn(x, context, context_lens, e)
return x
class Head(nn.Module):
def __init__(self, dim, out_dim, patch_size, eps=1e-6):
super().__init__()
self.dim = dim
self.out_dim = out_dim
self.patch_size = patch_size
self.eps = eps
# layers
out_dim = math.prod(patch_size) * out_dim
self.norm = WanLayerNorm(dim, eps)
self.head = nn.Linear(dim, out_dim)
# modulation
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)
def forward(self, x, e):
r"""
Args:
x(Tensor): Shape [B, L1, C]
e(Tensor): Shape [B, C]
"""
e = (self.modulation + e.unsqueeze(1)).chunk(2, dim=1)
x = (self.head(self.norm(x) * (1 + e[1]) + e[0]))
return x
class MLPProj(torch.nn.Module):
def __init__(self, in_dim, out_dim):
super().__init__()
self.proj = torch.nn.Sequential(
torch.nn.LayerNorm(in_dim), torch.nn.Linear(in_dim, in_dim),
torch.nn.GELU(), torch.nn.Linear(in_dim, out_dim),
torch.nn.LayerNorm(out_dim))
def forward(self, image_embeds):
clip_extra_context_tokens = self.proj(image_embeds)
return clip_extra_context_tokens
class WanTransformer3DModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
r"""
Wan diffusion backbone supporting both text-to-video and image-to-video.
"""
# ignore_for_config = [
# 'patch_size', 'cross_attn_norm', 'qk_norm', 'text_dim', 'window_size'
# ]
# _no_split_modules = ['WanAttentionBlock']
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
model_type='t2v',
patch_size=(1, 2, 2),
text_len=512,
in_dim=16,
dim=2048,
ffn_dim=8192,
freq_dim=256,
text_dim=4096,
out_dim=16,
num_heads=16,
num_layers=32,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=True,
eps=1e-6,
in_channels=16,
hidden_size=2048,
):
r"""
Initialize the diffusion model backbone.
Args:
model_type (`str`, *optional*, defaults to 't2v'):
Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video)
patch_size (`tuple`, *optional*, defaults to (1, 2, 2)):
3D patch dimensions for video embedding (t_patch, h_patch, w_patch)
text_len (`int`, *optional*, defaults to 512):
Fixed length for text embeddings
in_dim (`int`, *optional*, defaults to 16):
Input video channels (C_in)
dim (`int`, *optional*, defaults to 2048):
Hidden dimension of the transformer
ffn_dim (`int`, *optional*, defaults to 8192):
Intermediate dimension in feed-forward network
freq_dim (`int`, *optional*, defaults to 256):
Dimension for sinusoidal time embeddings
text_dim (`int`, *optional*, defaults to 4096):
Input dimension for text embeddings
out_dim (`int`, *optional*, defaults to 16):
Output video channels (C_out)
num_heads (`int`, *optional*, defaults to 16):
Number of attention heads
num_layers (`int`, *optional*, defaults to 32):
Number of transformer blocks
window_size (`tuple`, *optional*, defaults to (-1, -1)):
Window size for local attention (-1 indicates global attention)
qk_norm (`bool`, *optional*, defaults to True):
Enable query/key normalization
cross_attn_norm (`bool`, *optional*, defaults to False):
Enable cross-attention normalization
eps (`float`, *optional*, defaults to 1e-6):
Epsilon value for normalization layers
"""
super().__init__()
assert model_type in ['t2v', 'i2v']
self.model_type = model_type
self.patch_size = patch_size
self.text_len = text_len
self.in_dim = in_dim
self.dim = dim
self.ffn_dim = ffn_dim
self.freq_dim = freq_dim
self.text_dim = text_dim
self.out_dim = out_dim
self.num_heads = num_heads
self.num_layers = num_layers
self.window_size = window_size
self.qk_norm = qk_norm
self.cross_attn_norm = cross_attn_norm
self.eps = eps
# embeddings
self.patch_embedding = nn.Conv3d(
in_dim, dim, kernel_size=patch_size, stride=patch_size)
self.text_embedding = nn.Sequential(
nn.Linear(text_dim, dim), nn.GELU(approximate='tanh'),
nn.Linear(dim, dim))
self.time_embedding = nn.Sequential(
nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6))
# blocks
cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn'
self.blocks = nn.ModuleList([
WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads,
window_size, qk_norm, cross_attn_norm, eps)
for _ in range(num_layers)
])
# head
self.head = Head(dim, out_dim, patch_size, eps)
# buffers (don't use register_buffer otherwise dtype will be changed in to())
assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0
d = dim // num_heads
self.d = d
self.freqs = torch.cat(
[
rope_params(1024, d - 4 * (d // 6)),
rope_params(1024, 2 * (d // 6)),
rope_params(1024, 2 * (d // 6))
],
dim=1
)
if model_type == 'i2v':
self.img_emb = MLPProj(1280, dim)
self.teacache = None
self.gradient_checkpointing = False
self.sp_world_size = 1
self.sp_world_rank = 0
def enable_teacache(
self,
coefficients,
num_steps: int,
rel_l1_thresh: float,
num_skip_start_steps: int = 0,
offload: bool = True
):
self.teacache = TeaCache(
coefficients, num_steps, rel_l1_thresh=rel_l1_thresh, num_skip_start_steps=num_skip_start_steps, offload=offload
)
def disable_teacache(self):
self.teacache = None
def enable_riflex(
self,
k = 6,
L_test = 66,
L_test_scale = 4.886,
):
device = self.freqs.device
self.freqs = torch.cat(
[
get_1d_rotary_pos_embed_riflex(1024, self.d - 4 * (self.d // 6), use_real=False, k=k, L_test=L_test, L_test_scale=L_test_scale),
rope_params(1024, 2 * (self.d // 6)),
rope_params(1024, 2 * (self.d // 6))
],
dim=1
).to(device)
def disable_riflex(self):
device = self.freqs.device
self.freqs = torch.cat(
[
rope_params(1024, self.d - 4 * (self.d // 6)),
rope_params(1024, 2 * (self.d // 6)),
rope_params(1024, 2 * (self.d // 6))
],
dim=1
).to(device)
def enable_multi_gpus_inference(self,):
self.sp_world_size = get_sequence_parallel_world_size()
self.sp_world_rank = get_sequence_parallel_rank()
for block in self.blocks:
block.self_attn.forward = types.MethodType(
usp_attn_forward, block.self_attn)
def _set_gradient_checkpointing(self, module, value=False):
self.gradient_checkpointing = value
def forward(
self,
x,
t,
context,
seq_len,
clip_fea=None,
y=None,
cond_flag=True,
vocal_context=None,
audio_context=None,
motion_bucket=None,
motion_embeddings=None,
):
r"""
Forward pass through the diffusion model
Args:
x (List[Tensor]):
List of input video tensors, each with shape [C_in, F, H, W]
t (Tensor):
Diffusion timesteps tensor of shape [B]
context (List[Tensor]):
List of text embeddings each with shape [L, C]
seq_len (`int`):
Maximum sequence length for positional encoding
clip_fea (Tensor, *optional*):
CLIP image features for image-to-video mode
y (List[Tensor], *optional*):
Conditional video inputs for image-to-video mode, same shape as x
cond_flag (`bool`, *optional*, defaults to True):
Flag to indicate whether to forward the condition input
Returns:
List[Tensor]:
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
"""
if self.model_type == 'i2v':
assert clip_fea is not None and y is not None
# params
device = self.patch_embedding.weight.device
dtype = x.dtype
if self.freqs.device != device and torch.device(type="meta") != device:
self.freqs = self.freqs.to(device)
if y is not None:
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
# embeddings
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
grid_sizes = torch.stack([torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
x = [u.flatten(2).transpose(1, 2) for u in x]
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
if self.sp_world_size > 1:
seq_len = int(math.ceil(seq_len / self.sp_world_size)) * self.sp_world_size
assert seq_lens.max() <= seq_len
x = torch.cat([torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1) for u in x])
# face_masks = [torch.cat([u, v], dim=0) for u, v in zip(face_masks, face_masks_y)]
# face_masks = [self.patch_embedding(u.unsqueeze(0)) for u in face_masks]
# face_masks = [u.flatten(2).transpose(1, 2) for u in face_masks]
# face_masks_seq_lens = torch.tensor([u.size(1) for u in face_masks], dtype=torch.long)
# if self.sp_world_size > 1:
# seq_len = int(math.ceil(seq_len / self.sp_world_size)) * self.sp_world_size
# assert face_masks_seq_lens.max() <= seq_len
# face_masks = torch.cat([torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1) for u in face_masks])
# negative_face_masks = [torch.cat([u, v], dim=0) for u, v in zip(negative_face_masks, negative_face_masks_y)]
# negative_face_masks = [self.patch_embedding(u.unsqueeze(0)) for u in negative_face_masks]
# negative_face_masks = [u.flatten(2).transpose(1, 2) for u in negative_face_masks]
# negative_face_masks_seq_lens = torch.tensor([u.size(1) for u in negative_face_masks], dtype=torch.long)
# if self.sp_world_size > 1:
# seq_len = int(math.ceil(seq_len / self.sp_world_size)) * self.sp_world_size
# assert negative_face_masks_seq_lens.max() <= seq_len
# negative_face_masks = torch.cat([torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1) for u in negative_face_masks])
# time embeddings
with amp.autocast('cuda', dtype=torch.float32):
e = self.time_embedding(sinusoidal_embedding_1d(self.freq_dim, t).float())
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
if motion_embeddings is not None:
e0 = e0 + motion_embeddings.unflatten(1, (6, self.dim))
# to bfloat16 for saving memeory
# assert e.dtype == torch.float32 and e0.dtype == torch.float32
e0 = e0.to(dtype)
e = e.to(dtype)
# context
context_lens = None
context = self.text_embedding(
torch.stack([
torch.cat(
[u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
for u in context
]))
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
# print("-----------------------------------------")
# print(f"motion scale: {motion_scale}") # 0.2
# print(f"The size of face_masks: {face_masks.size()}") # [1, 81, 1, 512, 512]
# print(f"The size of context: {context.size()}") # [1, 512, 5120]
# print(f"The size of context_clip: {context_clip.size()}") # [1, 257, 5120]
# print(f"The size of e: {e.size()}") # [1, 5120]
# print(f"The size of e0: {e0.size()}") # [1, 6, 5120]
# print(f"The size of vocal_context: {vocal_context.size()}") # [1, 21, 32, 5120]
# print(f"The size of audio_context: {audio_context.size()}") # [1, 21, 32, 5120]
# print("-----------------------------------------")
if vocal_context is None:
dim = context_clip.size()[-1]
batch_size = context_clip.size()[0]
vocal_context = torch.zeros(batch_size, 21, 32, dim).to(device).to(dtype)
if audio_context is None:
dim = context_clip.size()[-1]
batch_size = context_clip.size()[0]
audio_context = torch.zeros(batch_size, 21, 32, dim).to(device).to(dtype)
vocal_context = rearrange(vocal_context, "b f n d -> b (f n) d")
audio_context = rearrange(audio_context, "b f n d -> b (f n) d")
context = torch.concat([context_clip, vocal_context, audio_context, context], dim=1)
# Context Parallel
if self.sp_world_size > 1:
x = torch.chunk(x, self.sp_world_size, dim=1)[self.sp_world_rank]
# TeaCache
if self.teacache is not None:
if cond_flag:
modulated_inp = e0
skip_flag = self.teacache.cnt < self.teacache.num_skip_start_steps
if self.teacache.cnt == 0 or self.teacache.cnt == self.teacache.num_steps - 1 or skip_flag:
should_calc = True
self.teacache.accumulated_rel_l1_distance = 0
else:
if cond_flag:
rel_l1_distance = self.teacache.compute_rel_l1_distance(self.teacache.previous_modulated_input, modulated_inp)
self.teacache.accumulated_rel_l1_distance += self.teacache.rescale_func(rel_l1_distance)
if self.teacache.accumulated_rel_l1_distance < self.teacache.rel_l1_thresh:
should_calc = False
else:
should_calc = True
self.teacache.accumulated_rel_l1_distance = 0
self.teacache.previous_modulated_input = modulated_inp
self.teacache.cnt += 1
if self.teacache.cnt == self.teacache.num_steps:
self.teacache.reset()
self.teacache.should_calc = should_calc
else:
should_calc = self.teacache.should_calc
# TeaCache
if self.teacache is not None:
if not should_calc:
previous_residual = self.teacache.previous_residual_cond if cond_flag else self.teacache.previous_residual_uncond
x = x + previous_residual.to(x.device)
else:
ori_x = x.clone().cpu() if self.teacache.offload else x.clone()
for block in self.blocks:
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
x = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
x,
e0,
seq_lens,
grid_sizes,
self.freqs,
context,
context_lens,
dtype,
**ckpt_kwargs,
)
else:
# arguments
kwargs = dict(
e=e0,
seq_lens=seq_lens,
grid_sizes=grid_sizes,
freqs=self.freqs,
context=context,
context_lens=context_lens,
dtype=dtype,
)
x = block(x, **kwargs)
if cond_flag:
self.teacache.previous_residual_cond = x.cpu() - ori_x if self.teacache.offload else x - ori_x
else:
self.teacache.previous_residual_uncond = x.cpu() - ori_x if self.teacache.offload else x - ori_x
else:
for block in self.blocks:
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
x = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
x,
e0,
seq_lens,
grid_sizes,
self.freqs,
context,
context_lens,
dtype,
**ckpt_kwargs,
)
else:
# arguments
kwargs = dict(
e=e0,
seq_lens=seq_lens,
grid_sizes=grid_sizes,
freqs=self.freqs,
context=context,
context_lens=context_lens,
dtype=dtype,
)
x = block(x, **kwargs)
if self.sp_world_size > 1:
x = get_sp_group().all_gather(x, dim=1)
# head
x = self.head(x, e)
# unpatchify
x = self.unpatchify(x, grid_sizes)
x = torch.stack(x)
return x
def unpatchify(self, x, grid_sizes):
r"""
Reconstruct video tensors from patch embeddings.
Args:
x (List[Tensor]):
List of patchified features, each with shape [L, C_out * prod(patch_size)]
grid_sizes (Tensor):
Original spatial-temporal grid dimensions before patching,
shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches)
Returns:
List[Tensor]:
Reconstructed video tensors with shape [C_out, F, H / 8, W / 8]
"""
c = self.out_dim
out = []
for u, v in zip(x, grid_sizes.tolist()):
u = u[:math.prod(v)].view(*v, *self.patch_size, c)
u = torch.einsum('fhwpqrc->cfphqwr', u)
u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)])
out.append(u)
return out
def init_weights(self):
r"""
Initialize model parameters using Xavier initialization.
"""
# basic init
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.zeros_(m.bias)
# init embeddings
nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1))
for m in self.text_embedding.modules():
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, std=.02)
for m in self.time_embedding.modules():
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, std=.02)
# init output layer
nn.init.zeros_(self.head.head.weight)
@classmethod
def from_pretrained(
cls, pretrained_model_path, subfolder=None, transformer_additional_kwargs={},
low_cpu_mem_usage=False, torch_dtype=torch.bfloat16
):
if subfolder is not None:
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
print(f"loaded 3D transformer's pretrained weights from {pretrained_model_path} ...")
config_file = os.path.join(pretrained_model_path, 'config.json')
if not os.path.isfile(config_file):
raise RuntimeError(f"{config_file} does not exist")
with open(config_file, "r") as f:
config = json.load(f)
from diffusers.utils import WEIGHTS_NAME
model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
model_file_safetensors = model_file.replace(".bin", ".safetensors")
if "dict_mapping" in transformer_additional_kwargs.keys():
for key in transformer_additional_kwargs["dict_mapping"]:
transformer_additional_kwargs[transformer_additional_kwargs["dict_mapping"][key]] = config[key]
# {'patch_size', 'qk_norm', 'window_size', 'cross_attn_norm', 'text_dim'} was not found in config. Values will be initialized to default values.
transformer_additional_kwargs["patch_size"] = (1, 2, 2)
transformer_additional_kwargs["qk_norm"] = True
transformer_additional_kwargs["window_size"] = (-1, -1)
transformer_additional_kwargs["cross_attn_norm"] = True
if low_cpu_mem_usage:
try:
import re
from diffusers.models.modeling_utils import \
load_model_dict_into_meta
from diffusers.utils import is_accelerate_available
if is_accelerate_available():
import accelerate
# Instantiate model with empty weights
with accelerate.init_empty_weights():
model = cls.from_config(config, **transformer_additional_kwargs)
param_device = "cpu"
if os.path.exists(model_file):
state_dict = torch.load(model_file, map_location="cpu")
elif os.path.exists(model_file_safetensors):
from safetensors.torch import load_file, safe_open
state_dict = load_file(model_file_safetensors)
else:
from safetensors.torch import load_file, safe_open
model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors"))
state_dict = {}
print(model_files_safetensors)
for _model_file_safetensors in model_files_safetensors:
_state_dict = load_file(_model_file_safetensors)
for key in _state_dict:
state_dict[key] = _state_dict[key]
model._convert_deprecated_attention_blocks(state_dict)
# move the params from meta device to cpu
missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
if len(missing_keys) > 0:
raise ValueError(
f"Cannot load {cls} from {pretrained_model_path} because the following keys are"
f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass"
" `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize"
" those weights or else make sure your checkpoint file is correct."
)
unexpected_keys = load_model_dict_into_meta(
model,
state_dict,
device=param_device,
dtype=torch_dtype,
model_name_or_path=pretrained_model_path,
)
if cls._keys_to_ignore_on_load_unexpected is not None:
for pat in cls._keys_to_ignore_on_load_unexpected:
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
if len(unexpected_keys) > 0:
print(
f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
)
return model
except Exception as e:
print(
f"The low_cpu_mem_usage mode is not work because {e}. Use low_cpu_mem_usage=False instead."
)
model = cls.from_config(config, **transformer_additional_kwargs)
if os.path.exists(model_file):
state_dict = torch.load(model_file, map_location="cpu")
elif os.path.exists(model_file_safetensors):
from safetensors.torch import load_file, safe_open
state_dict = load_file(model_file_safetensors)
else:
from safetensors.torch import load_file, safe_open
model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors"))
state_dict = {}
for _model_file_safetensors in model_files_safetensors:
_state_dict = load_file(_model_file_safetensors)
for key in _state_dict:
state_dict[key] = _state_dict[key]
if model.state_dict()['patch_embedding.weight'].size() != state_dict['patch_embedding.weight'].size():
model.state_dict()['patch_embedding.weight'][:, :state_dict['patch_embedding.weight'].size()[1], :, :] = state_dict['patch_embedding.weight']
model.state_dict()['patch_embedding.weight'][:, state_dict['patch_embedding.weight'].size()[1]:, :, :] = 0
state_dict['patch_embedding.weight'] = model.state_dict()['patch_embedding.weight']
# txt_path = "/home/qid/v-shuyuantu/mycontainer/v-shuyuantu/MyTalking/wan_state_dict.txt"
# with open(txt_path, 'w') as f:
# for name in model.state_dict().keys():
# f.write(f"{name}\n")
# print("===============This is Transformer from pretrained function=======================")
tmp_state_dict = {}
for key in state_dict:
if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size():
tmp_state_dict[key] = state_dict[key]
if "cross_attn.k_img.weight" in key:
talking_vocal_key = key.replace("k_img", "k_vocal")
talking_audio_key = key.replace("k_img", "k_audio")
# tmp_state_dict[talking_vocal_key] = state_dict[key]
# tmp_state_dict[talking_audio_key] = state_dict[key]
tmp_state_dict[talking_vocal_key] = torch.zeros_like(state_dict[key])
tmp_state_dict[talking_audio_key] = torch.zeros_like(state_dict[key])
elif "cross_attn.k_img.bias" in key:
talking_vocal_key = key.replace("k_img", "k_vocal")
talking_audio_key = key.replace("k_img", "k_audio")
# tmp_state_dict[talking_vocal_key] = state_dict[key]
# tmp_state_dict[talking_audio_key] = state_dict[key]
tmp_state_dict[talking_vocal_key] = torch.zeros_like(state_dict[key])
tmp_state_dict[talking_audio_key] = torch.zeros_like(state_dict[key])
elif "cross_attn.v_img.weight" in key:
talking_vocal_key = key.replace("v_img", "v_vocal")
talking_audio_key = key.replace("v_img", "v_audio")
# tmp_state_dict[talking_vocal_key] = state_dict[key]
# tmp_state_dict[talking_audio_key] = state_dict[key]
tmp_state_dict[talking_vocal_key] = torch.zeros_like(state_dict[key])
tmp_state_dict[talking_audio_key] = torch.zeros_like(state_dict[key])
elif "cross_attn.v_img.bias" in key:
talking_vocal_key = key.replace("v_img", "v_vocal")
talking_audio_key = key.replace("v_img", "v_audio")
# tmp_state_dict[talking_vocal_key] = state_dict[key]
# tmp_state_dict[talking_audio_key] = state_dict[key]
tmp_state_dict[talking_vocal_key] = torch.zeros_like(state_dict[key])
tmp_state_dict[talking_audio_key] = torch.zeros_like(state_dict[key])
elif "cross_attn.norm_k_img.weight" in key:
talking_vocal_key = key.replace("norm_k_img", "norm_k_vocal")
talking_audio_key = key.replace("norm_k_img", "norm_k_audio")
# tmp_state_dict[talking_vocal_key] = state_dict[key]
# tmp_state_dict[talking_audio_key] = state_dict[key]
tmp_state_dict[talking_vocal_key] = torch.zeros_like(state_dict[key])
tmp_state_dict[talking_audio_key] = torch.zeros_like(state_dict[key])
else:
print(key, "Size don't match, skip")
state_dict = tmp_state_dict
m, u = model.load_state_dict(state_dict, strict=False)
print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
print(m)
params = [p.numel() if "." in n else 0 for n, p in model.named_parameters()]
print(f"### All Parameters: {sum(params) / 1e6} M")
params = [p.numel() if "attn1." in n else 0 for n, p in model.named_parameters()]
print(f"### attn1 Parameters: {sum(params) / 1e6} M")
model = model.to(torch_dtype)
return model |