File size: 39,052 Bytes
cf2f35c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
import inspect
import math
import random
from dataclasses import dataclass
from functools import partial
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from tqdm import tqdm

import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from diffusers import FlowMatchEulerDiscreteScheduler
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.image_processor import VaeImageProcessor
from diffusers.models.embeddings import get_1d_rotary_pos_embed
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import BaseOutput, logging, replace_example_docstring
from diffusers.utils.torch_utils import randn_tensor
from diffusers.video_processor import VideoProcessor
from einops import rearrange
from PIL import Image
from transformers import AutoTokenizer
from transformers import Wav2Vec2Model, Wav2Vec2Processor

from wan.models.vocal_projector_fantasy import split_audio_sequence, split_tensor_with_padding
from wan.models.wan_fantasy_transformer3d_1B import WanTransformer3DFantasyModel
from wan.models.wan_image_encoder import CLIPModel
from wan.models.wan_text_encoder import WanT5EncoderModel
from wan.models.wan_vae import AutoencoderKLWan
from wan.utils.color_correction import match_and_blend_colors

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """

    Examples:

        ```python

        pass

        ```

"""

def enable_vram_management_recursively(model: torch.nn.Module, module_map: dict, module_config: dict, max_num_param=None, overflow_module_config: dict = None, total_num_param=0):
    for name, module in model.named_children():
        for source_module, target_module in module_map.items():
            if isinstance(module, source_module):
                num_param = sum(p.numel() for p in module.parameters())
                if max_num_param is not None and total_num_param + num_param > max_num_param:
                    module_config_ = overflow_module_config
                else:
                    module_config_ = module_config
                module_ = target_module(module, **module_config_)
                setattr(model, name, module_)
                total_num_param += num_param
                break
        else:
            total_num_param = enable_vram_management_recursively(module, module_map, module_config, max_num_param, overflow_module_config, total_num_param)
    return total_num_param

def enable_vram_management(model, module_map: dict, module_config: dict, max_num_param=None, overflow_module_config: dict = None):
    enable_vram_management_recursively(model, module_map, module_config, max_num_param, overflow_module_config, total_num_param=0)
    model.vram_management_enabled = True

def timestep_transform(

    t,

    shift=5.0,

    num_timesteps=1000,

):
    t = t / num_timesteps
    # shift the timestep based on ratio
    new_t = shift * t / (1 + (shift - 1) * t)
    new_t = new_t * num_timesteps
    return new_t


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(

        scheduler,

        num_inference_steps: Optional[int] = None,

        device: Optional[Union[str, torch.device]] = None,

        timesteps: Optional[List[int]] = None,

        sigmas: Optional[List[float]] = None,

        **kwargs,

):
    """

    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles

    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.



    Args:

        scheduler (`SchedulerMixin`):

            The scheduler to get timesteps from.

        num_inference_steps (`int`):

            The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`

            must be `None`.

        device (`str` or `torch.device`, *optional*):

            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.

        timesteps (`List[int]`, *optional*):

            Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,

            `num_inference_steps` and `sigmas` must be `None`.

        sigmas (`List[float]`, *optional*):

            Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,

            `num_inference_steps` and `timesteps` must be `None`.



    Returns:

        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the

        second element is the number of inference steps.

    """
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accept_sigmas:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" sigmas schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


def resize_mask(mask, latent, process_first_frame_only=True):
    latent_size = latent.size()
    batch_size, channels, num_frames, height, width = mask.shape

    if process_first_frame_only:
        target_size = list(latent_size[2:])
        target_size[0] = 1
        first_frame_resized = F.interpolate(
            mask[:, :, 0:1, :, :],
            size=target_size,
            mode='trilinear',
            align_corners=False
        )

        target_size = list(latent_size[2:])
        target_size[0] = target_size[0] - 1
        if target_size[0] != 0:
            remaining_frames_resized = F.interpolate(
                mask[:, :, 1:, :, :],
                size=target_size,
                mode='trilinear',
                align_corners=False
            )
            resized_mask = torch.cat([first_frame_resized, remaining_frames_resized], dim=2)
        else:
            resized_mask = first_frame_resized
    else:
        target_size = list(latent_size[2:])
        resized_mask = F.interpolate(
            mask,
            size=target_size,
            mode='trilinear',
            align_corners=False
        )
    return resized_mask


@dataclass
class WanI2VPipelineTalkingInferenceLongOutput(BaseOutput):
    r"""

    Output class for CogVideo pipelines.



    Args:

        video (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):

            List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing

            denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape

            `(batch_size, num_frames, channels, height, width)`.

    """

    videos: torch.Tensor


class WanI2VTalkingInferenceLongPipeline(DiffusionPipeline):
    r"""

    Pipeline for text-to-video generation using Wan.



    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the

    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    """

    _optional_components = []
    model_cpu_offload_seq = "text_encoder->clip_image_encoder->transformer->vae"

    _callback_tensor_inputs = [
        "latents",
        "prompt_embeds",
        "negative_prompt_embeds",
    ]

    def __init__(

            self,

            tokenizer: AutoTokenizer,

            text_encoder: WanT5EncoderModel,

            vae: AutoencoderKLWan,

            transformer: WanTransformer3DFantasyModel,

            clip_image_encoder: CLIPModel,

            scheduler: FlowMatchEulerDiscreteScheduler,

            wav2vec_processor: Wav2Vec2Processor,

            wav2vec: Wav2Vec2Model,

    ):
        super().__init__()

        self.register_modules(
            tokenizer=tokenizer,
            text_encoder=text_encoder,
            vae=vae,
            transformer=transformer,
            clip_image_encoder=clip_image_encoder,
            scheduler=scheduler,
            wav2vec_processor=wav2vec_processor,
            wav2vec=wav2vec,
        )

        self.video_processor = VideoProcessor(vae_scale_factor=self.vae.config.spacial_compression_ratio)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae.config.spacial_compression_ratio)
        self.mask_processor = VaeImageProcessor(
            vae_scale_factor=self.vae.spacial_compression_ratio, do_normalize=False, do_binarize=True,
            do_convert_grayscale=True
        )



    def _get_t5_prompt_embeds(

            self,

            prompt: Union[str, List[str]] = None,

            num_videos_per_prompt: int = 1,

            max_sequence_length: int = 512,

            device: Optional[torch.device] = None,

            dtype: Optional[torch.dtype] = None,

    ):
        device = device or self._execution_device
        dtype = dtype or self.text_encoder.dtype

        prompt = [prompt] if isinstance(prompt, str) else prompt
        batch_size = len(prompt)

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=max_sequence_length,
            truncation=True,
            add_special_tokens=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids
        prompt_attention_mask = text_inputs.attention_mask
        untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1: -1])
            logger.warning(
                "The following part of your input was truncated because `max_sequence_length` is set to "
                f" {max_sequence_length} tokens: {removed_text}"
            )

        seq_lens = prompt_attention_mask.gt(0).sum(dim=1).long()
        prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask.to(device))[0]
        prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)

        # duplicate text embeddings for each generation per prompt, using mps friendly method
        _, seq_len, _ = prompt_embeds.shape
        prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)

        return [u[:v] for u, v in zip(prompt_embeds, seq_lens)]

    def encode_prompt(

            self,

            prompt: Union[str, List[str]],

            negative_prompt: Optional[Union[str, List[str]]] = None,

            do_classifier_free_guidance: bool = True,

            num_videos_per_prompt: int = 1,

            prompt_embeds: Optional[torch.Tensor] = None,

            negative_prompt_embeds: Optional[torch.Tensor] = None,

            max_sequence_length: int = 512,

            device: Optional[torch.device] = None,

            dtype: Optional[torch.dtype] = None,

    ):
        r"""

        Encodes the prompt into text encoder hidden states.



        Args:

            prompt (`str` or `List[str]`, *optional*):

                prompt to be encoded

            negative_prompt (`str` or `List[str]`, *optional*):

                The prompt or prompts not to guide the image generation. If not defined, one has to pass

                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is

                less than `1`).

            do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):

                Whether to use classifier free guidance or not.

            num_videos_per_prompt (`int`, *optional*, defaults to 1):

                Number of videos that should be generated per prompt. torch device to place the resulting embeddings on

            prompt_embeds (`torch.Tensor`, *optional*):

                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not

                provided, text embeddings will be generated from `prompt` input argument.

            negative_prompt_embeds (`torch.Tensor`, *optional*):

                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt

                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input

                argument.

            device: (`torch.device`, *optional*):

                torch device

            dtype: (`torch.dtype`, *optional*):

                torch dtype

        """
        device = device or self._execution_device

        prompt = [prompt] if isinstance(prompt, str) else prompt
        if prompt is not None:
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            prompt_embeds = self._get_t5_prompt_embeds(
                prompt=prompt,
                num_videos_per_prompt=num_videos_per_prompt,
                max_sequence_length=max_sequence_length,
                device=device,
                dtype=dtype,
            )

        if do_classifier_free_guidance and negative_prompt_embeds is None:
            negative_prompt = negative_prompt or ""
            negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt

            if prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )

            negative_prompt_embeds = self._get_t5_prompt_embeds(
                prompt=negative_prompt,
                num_videos_per_prompt=num_videos_per_prompt,
                max_sequence_length=max_sequence_length,
                device=device,
                dtype=dtype,
            )

        return prompt_embeds, negative_prompt_embeds

    def prepare_latents(

            self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None

    ):
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        shape = (
            batch_size,
            num_channels_latents,
            (num_frames - 1) // self.vae.config.temporal_compression_ratio + 1,
            height // self.vae.config.spacial_compression_ratio,
            width // self.vae.config.spacial_compression_ratio,
        )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        if hasattr(self.scheduler, "init_noise_sigma"):
            latents = latents * self.scheduler.init_noise_sigma
        return latents

    def prepare_mask_latents(

            self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance,

            noise_aug_strength

    ):
        # resize the mask to latents shape as we concatenate the mask to the latents
        # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
        # and half precision

        if mask is not None:
            mask = mask.to(device=device, dtype=self.vae.dtype)
            bs = 1
            new_mask = []
            for i in range(0, mask.shape[0], bs):
                mask_bs = mask[i: i + bs]
                mask_bs = self.vae.encode(mask_bs)[0]
                mask_bs = mask_bs.mode()
                new_mask.append(mask_bs)
            mask = torch.cat(new_mask, dim=0)
            # mask = mask * self.vae.config.scaling_factor

        if masked_image is not None:
            masked_image = masked_image.to(device=device, dtype=self.vae.dtype)
            bs = 1
            new_mask_pixel_values = []
            for i in range(0, masked_image.shape[0], bs):
                mask_pixel_values_bs = masked_image[i: i + bs]
                mask_pixel_values_bs = self.vae.encode(mask_pixel_values_bs)[0]
                mask_pixel_values_bs = mask_pixel_values_bs.mode()
                new_mask_pixel_values.append(mask_pixel_values_bs)
            masked_image_latents = torch.cat(new_mask_pixel_values, dim=0)
            # masked_image_latents = masked_image_latents * self.vae.config.scaling_factor
        else:
            masked_image_latents = None

        return mask, masked_image_latents

    def decode_latents(self, latents: torch.Tensor) -> torch.Tensor:
        frames = self.vae.decode(latents.to(self.vae.dtype)).sample
        frames = frames.cpu()
        frames = (frames / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
        frames = frames.float().numpy()
        return frames

    def decode_latents_audio_video(self, latents: torch.Tensor) -> torch.Tensor:
        frames = self.vae.decode(latents.to(self.vae.dtype)).sample
        # frames = (frames / 2 + 0.5).clamp(0, 1)
        frames = frames.cpu().float()
        return frames


    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    # Copied from diffusers.pipelines.latte.pipeline_latte.LattePipeline.check_inputs
    def check_inputs(

            self,

            prompt,

            height,

            width,

            negative_prompt,

            callback_on_step_end_tensor_inputs,

            prompt_embeds=None,

            negative_prompt_embeds=None,

    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if callback_on_step_end_tensor_inputs is not None and not all(
                k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )
        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

    def infer_add_noise(

        self,

        original_samples: torch.FloatTensor,

        noise: torch.FloatTensor,

        timesteps: torch.IntTensor,

    ) -> torch.FloatTensor:
        """

        compatible with diffusers add_noise()

        """
        timesteps = timesteps.float() / self.num_timesteps
        timesteps = timesteps.view(timesteps.shape + (1,) * (len(noise.shape)-1))
        return (1 - timesteps) * original_samples + timesteps * noise

    @property
    def guidance_scale(self):
        return self._guidance_scale

    # @property
    # def num_timesteps(self):
    #     return self._num_timesteps

    @property
    def attention_kwargs(self):
        return self._attention_kwargs

    @property
    def interrupt(self):
        return self._interrupt

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(

            self,

            prompt: Optional[Union[str, List[str]]] = None,

            negative_prompt: Optional[Union[str, List[str]]] = None,

            height: int = 480,

            width: int = 720,

            video: Union[torch.FloatTensor] = None,

            mask_video: Union[torch.FloatTensor] = None,

            num_frames: int = 81,

            num_inference_steps: int = 50,

            timesteps: Optional[List[int]] = None,

            guidance_scale: float = 6,

            num_videos_per_prompt: int = 1,

            eta: float = 0.0,

            generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,

            latents: Optional[torch.FloatTensor] = None,

            prompt_embeds: Optional[torch.FloatTensor] = None,

            negative_prompt_embeds: Optional[torch.FloatTensor] = None,

            output_type: str = "numpy",

            return_dict: bool = False,

            callback_on_step_end: Optional[

                Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]

            ] = None,

            attention_kwargs: Optional[Dict[str, Any]] = None,

            callback_on_step_end_tensor_inputs: List[str] = ["latents"],

            clip_image: Image = None,

            max_sequence_length: int = 512,

            text_guide_scale=None,

            audio_guide_scale=None,

            vocal_input_values=None,

            motion_frame=None,

            fps=None,

            sr=None,

            cond_file_path=None,

            seed=None,

            overlap_window_length=None,

            overlapping_weight_scheme="uniform",

    ) -> Union[WanI2VPipelineTalkingInferenceLongOutput, Tuple]:
        """

        Function invoked when calling the pipeline for generation.

        Args:



        Examples:



        Returns:



        """

        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
        num_videos_per_prompt = 1

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            height,
            width,
            negative_prompt,
            callback_on_step_end_tensor_inputs,
            prompt_embeds,
            negative_prompt_embeds,
        )
        self._guidance_scale = guidance_scale
        self._attention_kwargs = attention_kwargs
        self._interrupt = False

        # 2. Default call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device
        weight_dtype = self.text_encoder.dtype

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt,
            negative_prompt,
            do_classifier_free_guidance,
            num_videos_per_prompt=num_videos_per_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            max_sequence_length=max_sequence_length,
            device=device,
        )
        if do_classifier_free_guidance:
            # prompt_embeds = negative_prompt_embeds + prompt_embeds + prompt_embeds
            prompt_embeds = negative_prompt_embeds + negative_prompt_embeds + prompt_embeds

        clip_length = 81
        audio_token_per_frame = int(sr / fps)
        max_audio_index = vocal_input_values.shape[0]
        total_frames = int(max_audio_index / audio_token_per_frame)
        frames_per_batch = 21
        if isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler):
            timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps, mu=1)
        else:
            timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
        self._num_timesteps = len(timesteps)

        latent_channels = self.vae.config.latent_channels
        latents = self.prepare_latents(
            batch_size * num_videos_per_prompt,
            latent_channels,
            total_frames,
            height,
            width,
            weight_dtype,
            device,
            generator,
            latents,
        )
        infer_length = latents.size()[2]
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
        latents_all = latents.clone()
        clip_image = cond_image = Image.open(cond_file_path).convert('RGB')
        cond_image = cond_image.resize([width, height])
        clip_image = clip_image.resize([width, height])
        clip_image = torch.from_numpy(np.array(clip_image)).permute(2, 0, 1)
        clip_image = clip_image / 255
        clip_image = (clip_image - 0.5) * 2  # C H W
        cond_image = torch.from_numpy(np.array(cond_image)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0)
        cond_image = cond_image / 255
        cond_image = (cond_image - 0.5) * 2  # normalization
        cond_image = cond_image.to(device)  # 1 C 1 H W

        clip_image = clip_image.to(device, weight_dtype)
        clip_context = self.clip_image_encoder([clip_image[:, None, :, :]])
        clip_context = (torch.cat([clip_context, clip_context, clip_context], dim=0) if do_classifier_free_guidance else clip_context)
        video_frames = torch.zeros(1, cond_image.shape[1], clip_length - cond_image.shape[2], height, width).to(device)
        padding_frames_pixels_values = torch.concat([cond_image, video_frames], dim=2).to(dtype=torch.float32)
        _, masked_video_latents = self.prepare_mask_latents(
            None,
            padding_frames_pixels_values,
            batch_size,
            height,
            width,
            weight_dtype,
            device,
            generator,
            do_classifier_free_guidance,
            noise_aug_strength=None,
        )  # [1, 16, 21, 64, 64]
        msk = torch.ones(1, clip_length, masked_video_latents.size()[-2], masked_video_latents.size()[-1], device=device)
        msk[:, 1:] = 0
        msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
        msk = msk.view(1, msk.shape[1] // 4, 4, masked_video_latents.size()[-2], masked_video_latents.size()[-1])
        msk = msk.transpose(1, 2).to(dtype=torch.float32)
        mask_input = torch.cat([msk] * 3) if do_classifier_free_guidance else msk
        masked_video_latents_input = (torch.cat([masked_video_latents] * 3) if do_classifier_free_guidance else masked_video_latents)
        y = torch.cat([mask_input.to(device), masked_video_latents_input.to(device)], dim=1).to(device, weight_dtype)

        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                pred_latents = torch.zeros_like(latents_all, dtype=latents_all.dtype, )
                arrive_last_frame = False
                index_start = 0
                overlap_window_length = overlap_window_length  # [5, 7, 10] longer length --> higher quality
                index_end = index_start + frames_per_batch
                index_previous_end = index_end
                while index_end <= infer_length:
                    self.scheduler._step_index = None
                    idx_list = [ii % latents_all.shape[2] for ii in range(index_start, index_end)]

                    if index_end == infer_length:
                        idx_list_audio = [ii % max_audio_index for ii in range(index_start * 4 * audio_token_per_frame, max_audio_index)]
                    else:
                        idx_list_audio = [ii % max_audio_index for ii in range(index_start * 4 * audio_token_per_frame, index_start * 4 * audio_token_per_frame + clip_length * audio_token_per_frame)]

                    # idx_list_audio = [ii % max_audio_index for ii in range(index_start * 4 * audio_token_per_frame, index_end * 4 * audio_token_per_frame)]
                    latents = latents_all[:, :, idx_list].clone()
                    sub_vocal_input_values = vocal_input_values[idx_list_audio]
                    sub_vocal_input_values = self.wav2vec_processor(sub_vocal_input_values, sampling_rate=sr, return_tensors="pt").input_values.to(device)
                    sub_vocal_embeddings = self.wav2vec(sub_vocal_input_values).last_hidden_state
                    latent_model_input = torch.cat([latents] * 3) if do_classifier_free_guidance else latents
                    if hasattr(self.scheduler, "scale_model_input"):
                        latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
                    timestep = t.expand(latent_model_input.shape[0])
                    target_shape = (self.vae.config.latent_channels, (num_frames - 1) // self.vae.config.temporal_compression_ratio + 1, width // self.vae.config.spacial_compression_ratio, height // self.vae.config.spacial_compression_ratio)
                    seq_len = math.ceil((target_shape[2] * target_shape[3]) / (self.transformer.config.patch_size[1] * self.transformer.config.patch_size[2]) * target_shape[1])
                    if text_guide_scale is not None and audio_guide_scale is not None:
                        sub_vocal_embeddings = torch.cat([torch.zeros_like(sub_vocal_embeddings), sub_vocal_embeddings, sub_vocal_embeddings], dim=0)
                    with torch.amp.autocast('cuda', dtype=weight_dtype):
                        legal_compressed_frames_num = latents.size()[2]
                        noise_pred = self.transformer(
                            x=latent_model_input,
                            context=prompt_embeds,
                            t=timestep,
                            seq_len=seq_len,
                            y=y[:, :, :legal_compressed_frames_num],
                            clip_fea=clip_context,
                            vocal_embeddings=sub_vocal_embeddings,
                            is_clip_level_modeling=False,
                        )
                    if do_classifier_free_guidance:
                        noise_pred_uncond, noise_pred_drop_audio, noise_pred_cond = noise_pred.chunk(3)
                        noise_pred = noise_pred_uncond + audio_guide_scale * (noise_pred_drop_audio - noise_pred_uncond) + text_guide_scale * (noise_pred_cond - noise_pred_drop_audio)
                    latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
                    torch.cuda.empty_cache()
                    if index_start != 0 and i != 0:
                        overlap_window_weight = torch.zeros(1, 1, overlap_window_length, 1, 1).to(device=latents.device, dtype=latents.dtype)
                        if overlapping_weight_scheme == "uniform":
                            for j in range(overlap_window_length):
                                overlap_window_weight[:, :, j] = j / (overlap_window_length-1)
                        elif overlapping_weight_scheme == "log":
                            init_weight = torch.linspace(0, 1, overlap_window_length)
                            init_weight = torch.log1p(init_weight * (torch.exp(torch.tensor(1.0)) - 1))
                            norm_weights = (init_weight - init_weight.min()) / (init_weight.max() - init_weight.min())
                            for j in range(overlap_window_length):
                                overlap_window_weight[:, :, j] = norm_weights[j]

                        overlap_idx_list_start = [ii % latents.shape[2] for ii in range(0, overlap_window_length)]
                        overlap_idx_list_end = [ii % latents_all.shape[2] for ii in range(index_previous_end-overlap_window_length, index_previous_end)]
                        latents[:, :, overlap_idx_list_start] = latents[:, :, overlap_idx_list_start] * overlap_window_weight + pred_latents[:, :, overlap_idx_list_end] * (1-overlap_window_weight)
                        latents = latents.to(torch.bfloat16)
                        for iii in range(legal_compressed_frames_num):
                            p = (index_start + iii) % pred_latents.shape[2]
                            pred_latents[:, :, p] = latents[:, :, iii]
                    else:
                        latents = latents.to(torch.bfloat16)
                        for iii in range(legal_compressed_frames_num):
                            p = (index_start + iii) % pred_latents.shape[2]
                            pred_latents[:, :, p] = latents[:, :, iii]
                    if arrive_last_frame:
                        break
                    if index_end != infer_length:
                        index_previous_end = index_end
                        index_start = index_start + (frames_per_batch-overlap_window_length)
                        if (index_start + frames_per_batch) < infer_length:
                            index_end = index_start + frames_per_batch
                        else:
                            index_end = infer_length
                            arrive_last_frame = True
                latents_all = pred_latents
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
        latents = latents_all.float()[:, :, :infer_length]
        torch.cuda.empty_cache()
        if output_type == "numpy":
            video = self.decode_latents(latents)
        elif not output_type == "latent":
            video = self.decode_latents(latents)
            video = self.video_processor.postprocess_video(video=video, output_type=output_type)
        else:
            video = latents
        # Offload all models
        self.maybe_free_model_hooks()
        if not return_dict:
            video = torch.from_numpy(video)
        return WanI2VPipelineTalkingInferenceLongOutput(videos=video)