Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.amp as amp | |
try: | |
import xfuser | |
from xfuser.core.distributed import (get_sequence_parallel_rank, | |
get_sequence_parallel_world_size, | |
get_sp_group, | |
init_distributed_environment, | |
initialize_model_parallel) | |
from xfuser.core.long_ctx_attention import xFuserLongContextAttention | |
except Exception as ex: | |
get_sequence_parallel_world_size = None | |
get_sequence_parallel_rank = None | |
xFuserLongContextAttention = None | |
get_sp_group = None | |
init_distributed_environment = None | |
initialize_model_parallel = None | |
def pad_freqs(original_tensor, target_len): | |
seq_len, s1, s2 = original_tensor.shape | |
pad_size = target_len - seq_len | |
padding_tensor = torch.ones( | |
pad_size, | |
s1, | |
s2, | |
dtype=original_tensor.dtype, | |
device=original_tensor.device) | |
padded_tensor = torch.cat([original_tensor, padding_tensor], dim=0) | |
return padded_tensor | |
def rope_apply(x, grid_sizes, freqs): | |
""" | |
x: [B, L, N, C]. | |
grid_sizes: [B, 3]. | |
freqs: [M, C // 2]. | |
""" | |
s, n, c = x.size(1), x.size(2), x.size(3) // 2 | |
# split freqs | |
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1) | |
# loop over samples | |
output = [] | |
for i, (f, h, w) in enumerate(grid_sizes.tolist()): | |
seq_len = f * h * w | |
# precompute multipliers | |
x_i = torch.view_as_complex(x[i, :s].to(torch.float32).reshape( | |
s, n, -1, 2)) | |
freqs_i = torch.cat([ | |
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1), | |
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), | |
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1) | |
], | |
dim=-1).reshape(seq_len, 1, -1) | |
# apply rotary embedding | |
sp_size = get_sequence_parallel_world_size() | |
sp_rank = get_sequence_parallel_rank() | |
freqs_i = pad_freqs(freqs_i, s * sp_size) | |
s_per_rank = s | |
freqs_i_rank = freqs_i[(sp_rank * s_per_rank):((sp_rank + 1) * | |
s_per_rank), :, :] | |
x_i = torch.view_as_real(x_i * freqs_i_rank).flatten(2) | |
x_i = torch.cat([x_i, x[i, s:]]) | |
# append to collection | |
output.append(x_i) | |
return torch.stack(output) | |
def usp_attn_forward(self, | |
x, | |
seq_lens, | |
grid_sizes, | |
freqs, | |
dtype=torch.bfloat16): | |
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim | |
half_dtypes = (torch.float16, torch.bfloat16) | |
def half(x): | |
return x if x.dtype in half_dtypes else x.to(dtype) | |
# query, key, value function | |
def qkv_fn(x): | |
q = self.norm_q(self.q(x)).view(b, s, n, d) | |
k = self.norm_k(self.k(x)).view(b, s, n, d) | |
v = self.v(x).view(b, s, n, d) | |
return q, k, v | |
q, k, v = qkv_fn(x) | |
q = rope_apply(q, grid_sizes, freqs) | |
k = rope_apply(k, grid_sizes, freqs) | |
# TODO: We should use unpaded q,k,v for attention. | |
# k_lens = seq_lens // get_sequence_parallel_world_size() | |
# if k_lens is not None: | |
# q = torch.cat([u[:l] for u, l in zip(q, k_lens)]).unsqueeze(0) | |
# k = torch.cat([u[:l] for u, l in zip(k, k_lens)]).unsqueeze(0) | |
# v = torch.cat([u[:l] for u, l in zip(v, k_lens)]).unsqueeze(0) | |
x = xFuserLongContextAttention()( | |
None, | |
query=half(q), | |
key=half(k), | |
value=half(v), | |
window_size=self.window_size) | |
# TODO: padding after attention. | |
# x = torch.cat([x, x.new_zeros(b, s - x.size(1), n, d)], dim=1) | |
# output | |
x = x.flatten(2) | |
x = self.o(x) | |
return x |