import torch import torch.distributed as dist try: import xfuser from xfuser.core.distributed import (get_sequence_parallel_rank, get_sequence_parallel_world_size, get_sp_group, get_world_group, init_distributed_environment, initialize_model_parallel) from xfuser.core.long_ctx_attention import xFuserLongContextAttention except Exception as ex: get_sequence_parallel_world_size = None get_sequence_parallel_rank = None xFuserLongContextAttention = None get_sp_group = None get_world_group = None init_distributed_environment = None initialize_model_parallel = None def set_multi_gpus_devices(ulysses_degree, ring_degree): if ulysses_degree > 1 or ring_degree > 1: if get_sp_group is None: raise RuntimeError("xfuser is not installed.") dist.init_process_group("nccl") print('parallel inference enabled: ulysses_degree=%d ring_degree=%d rank=%d world_size=%d' % ( ulysses_degree, ring_degree, dist.get_rank(), dist.get_world_size())) assert dist.get_world_size() == ring_degree * ulysses_degree, \ "number of GPUs(%d) should be equal to ring_degree * ulysses_degree." % dist.get_world_size() init_distributed_environment(rank=dist.get_rank(), world_size=dist.get_world_size()) initialize_model_parallel(sequence_parallel_degree=dist.get_world_size(), ring_degree=ring_degree, ulysses_degree=ulysses_degree) # device = torch.device("cuda:%d" % dist.get_rank()) device = torch.device(f"cuda:{get_world_group().local_rank}") print('rank=%d device=%s' % (get_world_group().rank, str(device))) else: device = "cuda" return device