|
import os |
|
from dotenv import load_dotenv |
|
from langgraph.graph import START, StateGraph, MessagesState |
|
from langgraph.prebuilt import tools_condition, ToolNode |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
from langchain_groq import ChatGroq |
|
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader |
|
from langchain_core.messages import SystemMessage, HumanMessage |
|
from langchain_core.tools import tool |
|
from langchain_groq import ChatGroq |
|
|
|
load_dotenv() |
|
|
|
|
|
|
|
|
|
|
|
@tool |
|
def multiply(a: int, b: int) -> int: |
|
"""Multiply two numbers.""" |
|
return a * b |
|
|
|
@tool |
|
def add(a: int, b: int) -> int: |
|
"""Add two numbers.""" |
|
return a + b |
|
|
|
@tool |
|
def subtract(a: int, b: int) -> int: |
|
"""Subtract two numbers.""" |
|
return a - b |
|
|
|
@tool |
|
def divide(a: int, b: int) -> float: |
|
"""Divide two numbers.""" |
|
if b == 0: |
|
raise ValueError("Cannot divide by zero.") |
|
return a / b |
|
|
|
@tool |
|
def modulus(a: int, b: int) -> int: |
|
"""Get the modulus of two numbers.""" |
|
return a % b |
|
|
|
@tool |
|
def wiki_search(query: str) -> str: |
|
"""Search Wikipedia for a query (max 2 results).""" |
|
docs = WikipediaLoader(query=query, load_max_docs=2).load() |
|
return "\n\n".join([doc.page_content for doc in docs]) |
|
|
|
@tool |
|
def web_search(query: str) -> str: |
|
"""Search the web using Tavily (max 3 results).""" |
|
results = TavilySearchResults(max_results=3).invoke(query) |
|
texts = [] |
|
for doc in results: |
|
if isinstance(doc, dict): |
|
texts.append(doc.get("content", "") or doc.get("text", "")) |
|
return "\n\n".join(texts) |
|
|
|
|
|
@tool |
|
def arvix_search(query: str) -> str: |
|
"""Search Arxiv for academic papers (max 3).""" |
|
docs = ArxivLoader(query=query, load_max_docs=3).load() |
|
return "\n\n".join([doc.page_content[:1000] for doc in docs]) |
|
|
|
tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search] |
|
|
|
|
|
|
|
system_prompt_path = "system_prompt.txt" |
|
if os.path.exists(system_prompt_path): |
|
with open(system_prompt_path, "r", encoding="utf-8") as f: |
|
system_prompt = f.read() |
|
else: |
|
system_prompt = ( |
|
"You are an intelligent AI agent who can solve math, science, factual, and research-based problems. " |
|
"You can use tools like Wikipedia, Web search, or Arxiv when needed. Always give precise and helpful answers." |
|
) |
|
sys_msg = SystemMessage(content=system_prompt) |
|
|
|
|
|
|
|
from langchain_openai import ChatOpenAI |
|
|
|
def build_graph(provider: str = "groq"): |
|
"""Build the LangGraph with tool-use.""" |
|
if provider == "google": |
|
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) |
|
elif provider == "groq": |
|
groq_key = os.getenv("GROQ_API_KEY") |
|
if not groq_key: |
|
raise ValueError("GROQ_API_KEY is not set.") |
|
llm = ChatGroq(model="qwen-qwq-32b", temperature=0, api_key=groq_key) |
|
elif provider == "huggingface": |
|
llm = ChatHuggingFace( |
|
llm=HuggingFaceEndpoint( |
|
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", |
|
temperature=0 |
|
) |
|
) |
|
elif provider == "openai": |
|
openai_key = os.getenv("OPENAI_API_KEY") |
|
if not openai_key: |
|
raise ValueError("OPENAI_API_KEY is not set.") |
|
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0, api_key=openai_key) |
|
else: |
|
raise ValueError("Invalid provider") |
|
|
|
llm_with_tools = llm.bind_tools(tools) |
|
|
|
def assistant(state: MessagesState): |
|
return {"messages": [sys_msg] + [llm_with_tools.invoke(state["messages"])]} |
|
|
|
|
|
builder = StateGraph(MessagesState) |
|
builder.add_node("assistant", assistant) |
|
builder.add_node("tools", ToolNode(tools)) |
|
|
|
builder.add_edge(START, "assistant") |
|
builder.add_conditional_edges("assistant", tools_condition) |
|
builder.add_edge("tools", "assistant") |
|
|
|
return builder.compile() |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?" |
|
graph = build_graph(provider="openai") |
|
messages = graph.invoke({"messages": [HumanMessage(content=question)]}) |
|
print("=== AI Agent Response ===") |
|
for m in messages["messages"]: |
|
m.pretty_print() |
|
|