Yongkang ZOU commited on
Commit
19dc6ec
·
1 Parent(s): 7544f9e

update requirements

Browse files
Files changed (1) hide show
  1. app.py +23 -81
app.py CHANGED
@@ -1,15 +1,12 @@
1
  import os
2
  import gradio as gr
3
  import requests
4
- import inspect
5
  import pandas as pd
6
 
7
- # (Keep Constants as is)
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
  # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
  class BasicAgent:
14
  def __init__(self):
15
  print("BasicAgent initialized.")
@@ -19,16 +16,11 @@ class BasicAgent:
19
  print(f"Agent returning fixed answer: {fixed_answer}")
20
  return fixed_answer
21
 
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
23
- """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
- and displays the results.
26
- """
27
- # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
 
30
- if profile:
31
- username= f"{profile.username}"
32
  print(f"User logged in: {username}")
33
  else:
34
  print("User not logged in.")
@@ -38,38 +30,25 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
38
  questions_url = f"{api_url}/questions"
39
  submit_url = f"{api_url}/submit"
40
 
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
  try:
43
  agent = BasicAgent()
44
  except Exception as e:
45
- print(f"Error instantiating agent: {e}")
46
  return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
  print(agent_code)
50
 
51
- # 2. Fetch Questions
52
  print(f"Fetching questions from: {questions_url}")
53
  try:
54
  response = requests.get(questions_url, timeout=15)
55
  response.raise_for_status()
56
  questions_data = response.json()
57
  if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
  print(f"Fetched {len(questions_data)} questions.")
61
  except requests.exceptions.RequestException as e:
62
- print(f"Error fetching questions: {e}")
63
  return f"Error fetching questions: {e}", None
64
- except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
- except Exception as e:
69
- print(f"An unexpected error occurred fetching questions: {e}")
70
- return f"An unexpected error occurred fetching questions: {e}", None
71
 
72
- # 3. Run your Agent
73
  results_log = []
74
  answers_payload = []
75
  print(f"Running agent on {len(questions_data)} questions...")
@@ -77,26 +56,23 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
77
  task_id = item.get("task_id")
78
  question_text = item.get("question")
79
  if not task_id or question_text is None:
80
- print(f"Skipping item with missing task_id or question: {item}")
81
  continue
82
  try:
83
  submitted_answer = agent(question_text)
84
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
  except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
 
90
  if not answers_payload:
91
- print("Agent did not produce any answers to submit.")
92
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
 
94
- # 4. Prepare Submission
95
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
- print(status_update)
 
98
 
99
- # 5. Submit
100
  print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
  try:
102
  response = requests.post(submit_url, json=submission_data, timeout=60)
@@ -109,36 +85,10 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
109
  f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
110
  f"Message: {result_data.get('message', 'No message received.')}"
111
  )
112
- print("Submission successful.")
113
  results_df = pd.DataFrame(results_log)
114
  return final_status, results_df
115
- except requests.exceptions.HTTPError as e:
116
- error_detail = f"Server responded with status {e.response.status_code}."
117
- try:
118
- error_json = e.response.json()
119
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
- except requests.exceptions.JSONDecodeError:
121
- error_detail += f" Response: {e.response.text[:500]}"
122
- status_message = f"Submission Failed: {error_detail}"
123
- print(status_message)
124
- results_df = pd.DataFrame(results_log)
125
- return status_message, results_df
126
- except requests.exceptions.Timeout:
127
- status_message = "Submission Failed: The request timed out."
128
- print(status_message)
129
- results_df = pd.DataFrame(results_log)
130
- return status_message, results_df
131
- except requests.exceptions.RequestException as e:
132
- status_message = f"Submission Failed: Network error - {e}"
133
- print(status_message)
134
- results_df = pd.DataFrame(results_log)
135
- return status_message, results_df
136
  except Exception as e:
137
- status_message = f"An unexpected error occurred during submission: {e}"
138
- print(status_message)
139
- results_df = pd.DataFrame(results_log)
140
- return status_message, results_df
141
-
142
 
143
  # --- Build Gradio Interface using Blocks ---
144
  with gr.Blocks() as demo:
@@ -146,51 +96,43 @@ with gr.Blocks() as demo:
146
  gr.Markdown(
147
  """
148
  **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
-
154
  ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
  """
159
  )
160
 
161
  gr.LoginButton()
 
162
 
163
  run_button = gr.Button("Run Evaluation & Submit All Answers")
164
-
165
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
 
169
  run_button.click(
170
  fn=run_and_submit_all,
 
171
  outputs=[status_output, results_table]
172
  )
173
 
174
  if __name__ == "__main__":
175
  print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
  space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
 
180
  if space_host_startup:
181
  print(f"✅ SPACE_HOST found: {space_host_startup}")
182
  print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
183
  else:
184
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
 
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
  print(f"✅ SPACE_ID found: {space_id_startup}")
188
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
190
  else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
192
 
193
  print("-"*(60 + len(" App Starting ")) + "\n")
194
-
195
  print("Launching Gradio Interface for Basic Agent Evaluation...")
196
- demo.launch(debug=True, share=False)
 
1
  import os
2
  import gradio as gr
3
  import requests
 
4
  import pandas as pd
5
 
 
6
  # --- Constants ---
7
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
8
 
9
  # --- Basic Agent Definition ---
 
10
  class BasicAgent:
11
  def __init__(self):
12
  print("BasicAgent initialized.")
 
16
  print(f"Agent returning fixed answer: {fixed_answer}")
17
  return fixed_answer
18
 
19
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
20
+ space_id = os.getenv("SPACE_ID")
 
 
 
 
 
21
 
22
+ if profile and profile.username:
23
+ username = profile.username
24
  print(f"User logged in: {username}")
25
  else:
26
  print("User not logged in.")
 
30
  questions_url = f"{api_url}/questions"
31
  submit_url = f"{api_url}/submit"
32
 
 
33
  try:
34
  agent = BasicAgent()
35
  except Exception as e:
 
36
  return f"Error initializing agent: {e}", None
37
+
38
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
39
  print(agent_code)
40
 
 
41
  print(f"Fetching questions from: {questions_url}")
42
  try:
43
  response = requests.get(questions_url, timeout=15)
44
  response.raise_for_status()
45
  questions_data = response.json()
46
  if not questions_data:
47
+ return "Fetched questions list is empty or invalid format.", None
 
48
  print(f"Fetched {len(questions_data)} questions.")
49
  except requests.exceptions.RequestException as e:
 
50
  return f"Error fetching questions: {e}", None
 
 
 
 
 
 
 
51
 
 
52
  results_log = []
53
  answers_payload = []
54
  print(f"Running agent on {len(questions_data)} questions...")
 
56
  task_id = item.get("task_id")
57
  question_text = item.get("question")
58
  if not task_id or question_text is None:
 
59
  continue
60
  try:
61
  submitted_answer = agent(question_text)
62
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
63
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
64
  except Exception as e:
65
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
 
66
 
67
  if not answers_payload:
 
68
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
69
 
70
+ submission_data = {
71
+ "username": username.strip(),
72
+ "agent_code": agent_code,
73
+ "answers": answers_payload
74
+ }
75
 
 
76
  print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
77
  try:
78
  response = requests.post(submit_url, json=submission_data, timeout=60)
 
85
  f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
86
  f"Message: {result_data.get('message', 'No message received.')}"
87
  )
 
88
  results_df = pd.DataFrame(results_log)
89
  return final_status, results_df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
  except Exception as e:
91
+ return f"Submission Failed: {e}", pd.DataFrame(results_log)
 
 
 
 
92
 
93
  # --- Build Gradio Interface using Blocks ---
94
  with gr.Blocks() as demo:
 
96
  gr.Markdown(
97
  """
98
  **Instructions:**
99
+ 1. Please clone this space, then modify the code to define your agent's logic, tools, etc.
100
+ 2. Log in to Hugging Face using the button below.
101
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and get your score.
 
 
102
  ---
 
 
 
103
  """
104
  )
105
 
106
  gr.LoginButton()
107
+ user_profile = gr.OAuthProfile()
108
 
109
  run_button = gr.Button("Run Evaluation & Submit All Answers")
 
110
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
111
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
112
 
113
  run_button.click(
114
  fn=run_and_submit_all,
115
+ inputs=[user_profile], # ✅ 关键:将登录信息传给函数
116
  outputs=[status_output, results_table]
117
  )
118
 
119
  if __name__ == "__main__":
120
  print("\n" + "-"*30 + " App Starting " + "-"*30)
 
121
  space_host_startup = os.getenv("SPACE_HOST")
122
+ space_id_startup = os.getenv("SPACE_ID")
123
 
124
  if space_host_startup:
125
  print(f"✅ SPACE_HOST found: {space_host_startup}")
126
  print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
127
  else:
128
+ print("ℹ️ SPACE_HOST not found (running locally?).")
129
 
130
+ if space_id_startup:
131
  print(f"✅ SPACE_ID found: {space_id_startup}")
132
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
 
133
  else:
134
+ print("ℹ️ SPACE_ID not found. Repo URL cannot be determined.")
135
 
136
  print("-"*(60 + len(" App Starting ")) + "\n")
 
137
  print("Launching Gradio Interface for Basic Agent Evaluation...")
138
+ demo.launch(debug=True, share=False)