Yongkang ZOU
commited on
Commit
·
b5faafa
1
Parent(s):
3fba19d
update agent
Browse files
agent.py
CHANGED
@@ -1,22 +1,25 @@
|
|
1 |
import os
|
2 |
from dotenv import load_dotenv
|
3 |
-
from langgraph.graph import START, StateGraph, MessagesState
|
4 |
from langgraph.prebuilt import tools_condition, ToolNode
|
5 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
6 |
from langchain_groq import ChatGroq
|
7 |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
|
8 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
9 |
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
10 |
-
from langchain_core.messages import SystemMessage, HumanMessage
|
11 |
from langchain_core.tools import tool
|
12 |
from langchain_groq import ChatGroq
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
load_dotenv()
|
15 |
|
16 |
-
|
17 |
-
|
18 |
# ------------------- TOOL DEFINITIONS -------------------
|
19 |
-
|
20 |
@tool
|
21 |
def multiply(a: int, b: int) -> int:
|
22 |
"""Multiply two numbers."""
|
@@ -29,19 +32,19 @@ def add(a: int, b: int) -> int:
|
|
29 |
|
30 |
@tool
|
31 |
def subtract(a: int, b: int) -> int:
|
32 |
-
"""Subtract
|
33 |
return a - b
|
34 |
|
35 |
@tool
|
36 |
def divide(a: int, b: int) -> float:
|
37 |
-
"""Divide
|
38 |
if b == 0:
|
39 |
raise ValueError("Cannot divide by zero.")
|
40 |
return a / b
|
41 |
|
42 |
@tool
|
43 |
def modulus(a: int, b: int) -> int:
|
44 |
-
"""Get
|
45 |
return a % b
|
46 |
|
47 |
@tool
|
@@ -54,23 +57,19 @@ def wiki_search(query: str) -> str:
|
|
54 |
def web_search(query: str) -> str:
|
55 |
"""Search the web using Tavily (max 3 results)."""
|
56 |
results = TavilySearchResults(max_results=3).invoke(query)
|
57 |
-
texts = []
|
58 |
-
for doc in results:
|
59 |
-
if isinstance(doc, dict):
|
60 |
-
texts.append(doc.get("content", "") or doc.get("text", ""))
|
61 |
return "\n\n".join(texts)
|
62 |
|
63 |
-
|
64 |
@tool
|
65 |
def arvix_search(query: str) -> str:
|
66 |
-
"""Search Arxiv for academic papers (max 3)."""
|
67 |
docs = ArxivLoader(query=query, load_max_docs=3).load()
|
68 |
return "\n\n".join([doc.page_content[:1000] for doc in docs])
|
69 |
|
|
|
70 |
tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search]
|
71 |
|
72 |
# ------------------- SYSTEM PROMPT -------------------
|
73 |
-
|
74 |
system_prompt_path = "system_prompt.txt"
|
75 |
if os.path.exists(system_prompt_path):
|
76 |
with open(system_prompt_path, "r", encoding="utf-8") as f:
|
@@ -83,12 +82,7 @@ else:
|
|
83 |
sys_msg = SystemMessage(content=system_prompt)
|
84 |
|
85 |
# ------------------- GRAPH CONSTRUCTION -------------------
|
86 |
-
|
87 |
-
from langchain_openai import ChatOpenAI # ✅ 新增导入
|
88 |
-
|
89 |
def build_graph(provider: str = "groq"):
|
90 |
-
"""Build LangGraph agent with QA retriever and tool-use fallback."""
|
91 |
-
# 初始化 LLM
|
92 |
if provider == "google":
|
93 |
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
94 |
elif provider == "groq":
|
@@ -111,13 +105,11 @@ def build_graph(provider: str = "groq"):
|
|
111 |
else:
|
112 |
raise ValueError("Invalid provider")
|
113 |
|
114 |
-
# 工具绑定
|
115 |
llm_with_tools = llm.bind_tools(tools)
|
116 |
|
117 |
def assistant(state: MessagesState):
|
118 |
return {"messages": [sys_msg] + [llm_with_tools.invoke(state["messages"])]}
|
119 |
|
120 |
-
# ✅ 初始化 Supabase Retriever
|
121 |
SUPABASE_URL = os.getenv("SUPABASE_URL")
|
122 |
SUPABASE_KEY = os.getenv("SUPABASE_SERVICE_KEY")
|
123 |
supabase = create_client(SUPABASE_URL, SUPABASE_KEY)
|
@@ -130,7 +122,38 @@ def build_graph(provider: str = "groq"):
|
|
130 |
)
|
131 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 1})
|
132 |
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
def qa_retriever_node(state: MessagesState):
|
135 |
user_question = state["messages"][-1].content
|
136 |
docs = retriever.invoke(user_question)
|
@@ -139,12 +162,8 @@ def build_graph(provider: str = "groq"):
|
|
139 |
"messages": state["messages"] + [AIMessage(content=docs[0].page_content)],
|
140 |
"__condition__": "complete"
|
141 |
}
|
142 |
-
return {
|
143 |
-
"messages": state["messages"],
|
144 |
-
"__condition__": "default"
|
145 |
-
}
|
146 |
|
147 |
-
# 构建图结构
|
148 |
builder = StateGraph(MessagesState)
|
149 |
builder.add_node("retriever", qa_retriever_node)
|
150 |
builder.add_node("assistant", assistant)
|
@@ -152,8 +171,8 @@ def build_graph(provider: str = "groq"):
|
|
152 |
|
153 |
builder.add_edge(START, "retriever")
|
154 |
builder.add_conditional_edges("retriever", {
|
155 |
-
"default": "assistant",
|
156 |
-
"complete":
|
157 |
})
|
158 |
builder.add_conditional_edges("assistant", tools_condition)
|
159 |
builder.add_edge("tools", "assistant")
|
@@ -161,7 +180,6 @@ def build_graph(provider: str = "groq"):
|
|
161 |
return builder.compile()
|
162 |
|
163 |
# ------------------- LOCAL TEST -------------------
|
164 |
-
|
165 |
if __name__ == "__main__":
|
166 |
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
167 |
graph = build_graph(provider="openai")
|
|
|
1 |
import os
|
2 |
from dotenv import load_dotenv
|
3 |
+
from langgraph.graph import START, StateGraph, MessagesState, END
|
4 |
from langgraph.prebuilt import tools_condition, ToolNode
|
5 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
6 |
from langchain_groq import ChatGroq
|
7 |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
|
8 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
9 |
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
10 |
+
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
11 |
from langchain_core.tools import tool
|
12 |
from langchain_groq import ChatGroq
|
13 |
+
from supabase import create_client
|
14 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
15 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
16 |
+
from langchain_openai import ChatOpenAI
|
17 |
+
from langchain_core.documents import Document
|
18 |
+
import json
|
19 |
|
20 |
load_dotenv()
|
21 |
|
|
|
|
|
22 |
# ------------------- TOOL DEFINITIONS -------------------
|
|
|
23 |
@tool
|
24 |
def multiply(a: int, b: int) -> int:
|
25 |
"""Multiply two numbers."""
|
|
|
32 |
|
33 |
@tool
|
34 |
def subtract(a: int, b: int) -> int:
|
35 |
+
"""Subtract b from a."""
|
36 |
return a - b
|
37 |
|
38 |
@tool
|
39 |
def divide(a: int, b: int) -> float:
|
40 |
+
"""Divide a by b. Raise error if b is zero."""
|
41 |
if b == 0:
|
42 |
raise ValueError("Cannot divide by zero.")
|
43 |
return a / b
|
44 |
|
45 |
@tool
|
46 |
def modulus(a: int, b: int) -> int:
|
47 |
+
"""Get remainder of a divided by b."""
|
48 |
return a % b
|
49 |
|
50 |
@tool
|
|
|
57 |
def web_search(query: str) -> str:
|
58 |
"""Search the web using Tavily (max 3 results)."""
|
59 |
results = TavilySearchResults(max_results=3).invoke(query)
|
60 |
+
texts = [doc.get("content", "") or doc.get("text", "") for doc in results if isinstance(doc, dict)]
|
|
|
|
|
|
|
61 |
return "\n\n".join(texts)
|
62 |
|
|
|
63 |
@tool
|
64 |
def arvix_search(query: str) -> str:
|
65 |
+
"""Search Arxiv for academic papers (max 3 results, truncated to 1000 characters each)."""
|
66 |
docs = ArxivLoader(query=query, load_max_docs=3).load()
|
67 |
return "\n\n".join([doc.page_content[:1000] for doc in docs])
|
68 |
|
69 |
+
|
70 |
tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search]
|
71 |
|
72 |
# ------------------- SYSTEM PROMPT -------------------
|
|
|
73 |
system_prompt_path = "system_prompt.txt"
|
74 |
if os.path.exists(system_prompt_path):
|
75 |
with open(system_prompt_path, "r", encoding="utf-8") as f:
|
|
|
82 |
sys_msg = SystemMessage(content=system_prompt)
|
83 |
|
84 |
# ------------------- GRAPH CONSTRUCTION -------------------
|
|
|
|
|
|
|
85 |
def build_graph(provider: str = "groq"):
|
|
|
|
|
86 |
if provider == "google":
|
87 |
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
88 |
elif provider == "groq":
|
|
|
105 |
else:
|
106 |
raise ValueError("Invalid provider")
|
107 |
|
|
|
108 |
llm_with_tools = llm.bind_tools(tools)
|
109 |
|
110 |
def assistant(state: MessagesState):
|
111 |
return {"messages": [sys_msg] + [llm_with_tools.invoke(state["messages"])]}
|
112 |
|
|
|
113 |
SUPABASE_URL = os.getenv("SUPABASE_URL")
|
114 |
SUPABASE_KEY = os.getenv("SUPABASE_SERVICE_KEY")
|
115 |
supabase = create_client(SUPABASE_URL, SUPABASE_KEY)
|
|
|
122 |
)
|
123 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 1})
|
124 |
|
125 |
+
|
126 |
+
# ✅ 替换 similarity_search_by_vector_with_relevance_scores 方法,直接调用 supabase.rpc
|
127 |
+
original_fn = vectorstore.similarity_search_by_vector_with_relevance_scores
|
128 |
+
|
129 |
+
# ✅ 覆盖 vectorstore 的方法
|
130 |
+
def patched_fn(embedding, k=4, filter=None, **kwargs):
|
131 |
+
response = supabase.rpc(
|
132 |
+
"match_documents",
|
133 |
+
{
|
134 |
+
"query_embedding": embedding,
|
135 |
+
"match_count": k
|
136 |
+
}
|
137 |
+
).execute()
|
138 |
+
|
139 |
+
documents = []
|
140 |
+
for r in response.data:
|
141 |
+
metadata = r["metadata"]
|
142 |
+
if isinstance(metadata, str):
|
143 |
+
try:
|
144 |
+
metadata = json.loads(metadata)
|
145 |
+
except Exception:
|
146 |
+
metadata = {}
|
147 |
+
doc = Document(
|
148 |
+
page_content=r["content"],
|
149 |
+
metadata=metadata
|
150 |
+
)
|
151 |
+
documents.append((doc, r["similarity"]))
|
152 |
+
return documents
|
153 |
+
|
154 |
+
# ✅ 覆盖 vectorstore 的方法
|
155 |
+
vectorstore.similarity_search_by_vector_with_relevance_scores = patched_fn
|
156 |
+
|
157 |
def qa_retriever_node(state: MessagesState):
|
158 |
user_question = state["messages"][-1].content
|
159 |
docs = retriever.invoke(user_question)
|
|
|
162 |
"messages": state["messages"] + [AIMessage(content=docs[0].page_content)],
|
163 |
"__condition__": "complete"
|
164 |
}
|
165 |
+
return {"messages": state["messages"], "__condition__": "default"}
|
|
|
|
|
|
|
166 |
|
|
|
167 |
builder = StateGraph(MessagesState)
|
168 |
builder.add_node("retriever", qa_retriever_node)
|
169 |
builder.add_node("assistant", assistant)
|
|
|
171 |
|
172 |
builder.add_edge(START, "retriever")
|
173 |
builder.add_conditional_edges("retriever", {
|
174 |
+
"default": lambda x: "assistant",
|
175 |
+
"complete": lambda x: END,
|
176 |
})
|
177 |
builder.add_conditional_edges("assistant", tools_condition)
|
178 |
builder.add_edge("tools", "assistant")
|
|
|
180 |
return builder.compile()
|
181 |
|
182 |
# ------------------- LOCAL TEST -------------------
|
|
|
183 |
if __name__ == "__main__":
|
184 |
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
185 |
graph = build_graph(provider="openai")
|