import os import gradio as gr import requests import pandas as pd from agent import build_graph from langchain_core.messages import HumanMessage import re def extract_answer(text: str) -> str: """ Clean and extract the final answer from agent output. Removes prefixes like 'FINAL ANSWER:', trims punctuation, and normalizes separators. """ # 提取 final answer 后内容 match = re.search(r"(final\s*answer|answer\s*is)[::]?\s*(.+)", text, re.IGNORECASE) answer = match.group(2) if match else text # 清理格式 answer = answer.strip().lstrip(":").strip() # ✅ 去掉前导冒号和空格 answer = answer.rstrip('.').strip() # 多项格式化 if ',' in answer: answer = ",".join(part.strip() for part in answer.split(',')) if ';' in answer: answer = "; ".join(part.strip() for part in answer.split(';')) return answer # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # --- Basic Agent Definition --- class BasicAgent: def __init__(self, provider: str = "openai"): print(f"Initializing LangGraph Agent with provider: {provider}") self.graph = build_graph(provider=provider) def __call__(self, question: str) -> str: print(f"Running LangGraph Agent on question: {question[:50]}...") try: messages = [HumanMessage(content=question)] result = self.graph.invoke({"messages": messages}) outputs = result["messages"] for m in reversed(outputs): if m.type == "ai": raw_answer = m.content clean = extract_answer(raw_answer) print(f"Extracted clean answer: {clean}") return clean return "" except Exception as e: print(f"LangGraph Agent error: {e}") return f"Error: {str(e)}" def run_and_submit_all(username: str): if not username: return "❌ Please enter your Hugging Face username.", None space_id = os.getenv("SPACE_ID") api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" try: agent = BasicAgent() except Exception as e: return f"Error initializing agent: {e}", None agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "N/A" print(f"Fetching questions from: {questions_url}") try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: return "Fetched questions list is empty or invalid format.", None print(f"Fetched {len(questions_data)} questions.") except requests.exceptions.RequestException as e: return f"Error fetching questions: {e}", None results_log = [] answers_payload = [] print(f"Running agent on {len(questions_data)} questions...") for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: continue try: submitted_answer = agent(question_text) answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) except Exception as e: results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) if not answers_payload: return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) submission_data = { "username": username.strip(), "agent_code": agent_code, "answers": answers_payload } print(f"Submitting {len(answers_payload)} answers to: {submit_url}") try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"✅ Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Overall Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}" ) results_df = pd.DataFrame(results_log) return final_status, results_df except Exception as e: return f"❌ Submission Failed: {e}", pd.DataFrame(results_log) # --- Gradio Interface --- with gr.Blocks() as demo: gr.Markdown("# Basic Agent Evaluation Runner") gr.Markdown( """ **Instructions:** 1. Please enter your Hugging Face username below manually. 2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see your score. --- """ ) username_box = gr.Textbox(label="Your Hugging Face Username (for submission)", placeholder="e.g. johndoe") run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) run_button.click( fn=run_and_submit_all, inputs=[username_box], outputs=[status_output, results_table] ) if __name__ == "__main__": print("\n" + "-"*30 + " App Starting " + "-"*30) space_host_startup = os.getenv("SPACE_HOST") space_id_startup = os.getenv("SPACE_ID") if space_host_startup: print(f"✅ SPACE_HOST found: {space_host_startup}") print(f" Runtime URL should be: https://{space_host_startup}.hf.space") else: print("ℹ️ SPACE_HOST not found (running locally?).") if space_id_startup: print(f"✅ SPACE_ID found: {space_id_startup}") print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") else: print("ℹ️ SPACE_ID not found. Repo URL cannot be determined.") print("-"*(60 + len(" App Starting ")) + "\n") print("Launching Gradio Interface for Basic Agent Evaluation...") demo.launch(debug=True, share=False)