import os from dotenv import load_dotenv from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition, ToolNode from langchain_google_genai import ChatGoogleGenerativeAI from langchain_groq import ChatGroq from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader, ArxivLoader from langchain_core.messages import SystemMessage, HumanMessage from langchain_core.tools import tool from langchain_groq import ChatGroq load_dotenv() # ------------------- TOOL DEFINITIONS ------------------- @tool def multiply(a: int, b: int) -> int: """Multiply two numbers.""" return a * b @tool def add(a: int, b: int) -> int: """Add two numbers.""" return a + b @tool def subtract(a: int, b: int) -> int: """Subtract two numbers.""" return a - b @tool def divide(a: int, b: int) -> float: """Divide two numbers.""" if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: """Get the modulus of two numbers.""" return a % b @tool def wiki_search(query: str) -> str: """Search Wikipedia for a query (max 2 results).""" docs = WikipediaLoader(query=query, load_max_docs=2).load() return "\n\n".join([doc.page_content for doc in docs]) @tool def web_search(query: str) -> str: """Search the web using Tavily (max 3 results).""" docs = TavilySearchResults(max_results=3).invoke(query) return "\n\n".join([doc.page_content for doc in docs]) @tool def arvix_search(query: str) -> str: """Search Arxiv for academic papers (max 3).""" docs = ArxivLoader(query=query, load_max_docs=3).load() return "\n\n".join([doc.page_content[:1000] for doc in docs]) tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search] # ------------------- SYSTEM PROMPT ------------------- system_prompt_path = "system_prompt.txt" if os.path.exists(system_prompt_path): with open(system_prompt_path, "r", encoding="utf-8") as f: system_prompt = f.read() else: system_prompt = ( "You are an intelligent AI agent who can solve math, science, factual, and research-based problems. " "You can use tools like Wikipedia, Web search, or Arxiv when needed. Always give precise and helpful answers." ) sys_msg = SystemMessage(content=system_prompt) # ------------------- GRAPH CONSTRUCTION ------------------- from langchain_openai import ChatOpenAI # ✅ 新增导入 def build_graph(provider: str = "groq"): """Build the LangGraph with tool-use.""" if provider == "google": llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) elif provider == "groq": groq_key = os.getenv("GROQ_API_KEY") if not groq_key: raise ValueError("GROQ_API_KEY is not set.") llm = ChatGroq(model="qwen-qwq-32b", temperature=0, api_key=groq_key) elif provider == "huggingface": llm = ChatHuggingFace( llm=HuggingFaceEndpoint( url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", temperature=0 ) ) elif provider == "openai": openai_key = os.getenv("OPENAI_API_KEY") if not openai_key: raise ValueError("OPENAI_API_KEY is not set.") llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0, api_key=openai_key) # ✅ OpenAI GPT else: raise ValueError("Invalid provider") llm_with_tools = llm.bind_tools(tools) def assistant(state: MessagesState): return {"messages": [sys_msg] + [llm_with_tools.invoke(state["messages"])]} # Build the graph with assistant and tools builder = StateGraph(MessagesState) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.add_edge(START, "assistant") builder.add_conditional_edges("assistant", tools_condition) builder.add_edge("tools", "assistant") return builder.compile() # ------------------- LOCAL TEST ------------------- if __name__ == "__main__": question = "What is 17 * 23?" graph = build_graph(provider="groq") messages = graph.invoke({"messages": [HumanMessage(content=question)]}) print("=== AI Agent Response ===") for m in messages["messages"]: m.pretty_print()