File size: 29,433 Bytes
7b127f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
#Frontend
import sys
import gradio as gr
from pathlib import Path
import os
sys.path.insert(0, "/data")
from app.AppLayout import *
from app.GeneratingMethod import *
from app.ModelDirector import *
from app.DataProcessor import *

os.environ["HF_HOME"] = "/data/.huggingface"
os.environ["TORCH_HOME"] = "/data/.cache/torch"

# Theme
theme = gr.themes.Soft(
    primary_hue="slate",
    text_size="lg",
    font=['IBM Plex Sans', 'ui-sans-serif', 'system-ui', gr.themes.GoogleFont('sans-serif')],
).set(
    block_background_fill='*primary_200',
    button_primary_background_fill='*primary_100',
    body_background_fill='*secondary_50',
)

force_light = """
function refresh() {
    const url = new URL(window.location);

    if (url.searchParams.get('__theme') !== 'light') {
        url.searchParams.set('__theme', 'light');
        window.location.href = url.href;
    }
}
"""

# 自定义CSS样式
custom_css = """
.gr-tabs.gr-tab-label {
    text-align: center;
}
button[role="tab"] {
    font-size: 20px;
}
div[role="tablist"] {
    height: var(--size-12);
}

#top-row {
    display: flex;
    justify-content: space-between;
    align-items: center;
    width: 100%;
}
#button-group {
    display: flex;
    gap: 10px;
    justify-content: flex-end;
}
.small-button {
    max-width: 80px;
    padding: 6px 10px;
    font-size: 14px;
}

@media (min-width: 1024px) {
    div[role="tablist"] {
        /* 电脑端居中 */
        justify-content: center;
    }
}

.tabs {
    margin-top: 20px;
}

div[data-testid="markdown"] span p:not(:first-child) {
    margin-top: unset;
}
div[data-testid="markdown"] pre code {
    font-family: 'IBM Plex Sans', 'ui-sans-serif', 'system-ui', 'sans-serif';
    font-size: 14px;
}

/* 媒体查询 */
@media (max-width: 768px) {
    button[role="tab"] {
        font-size: 15px;
    }
    p.title1 {
        font-size: 46px !important;
        letter-spacing: unset !important;
    }
    p.title2 {
        font-size: 21px !important;
    }
    p.title4 {
        font-size: 16px !important;
    }
    p.title5 {
        font-size: 12px !important;
    }
}

h2.heading {
    font-size: 23px;
}

@media (max-width: 550px) {
    .title3-responsive {
        gap: 0 !important;
    }
    .title3-responsive span:first-child,
    .title3-responsive span:last-child {
        width: 20px !important;
    }
    .title3-responsive span:nth-child(2) {
        padding: 2px 6px !important;
        font-size: 12px;
    }
}

@media (min-width: 551px) and (max-width: 768px) {
    .title3-responsive {
        gap: 0 !important;
    }
    .title3-responsive span:first-child,
    .title3-responsive span:last-child {
        width: 50px !important;
    }
    .title3-responsive span:nth-child(2) {
        font-size: 15px;
    }
}

@media (min-width: 769px) and (max-width: 1024px) {
    .title3-responsive span:first-child,
    .title3-responsive span:last-child {
        width: 70px !important;
    }
    .title3-responsive span:nth-child(2) {
        font-size: 20px;
    }
}

@media (max-width: 768px) {
    .mobile-break {
        display: block;
    }
}
@media (min-width: 769px) {
    .mobile-break {
        display: none;
    }
}
"""

DEMO_NUM = 4
WIREFRAME_FILE = 0
SOLID_FILE = 1
STEP_FILE = 2

BACKEND_CONDITION_DICT = {
    'Unconditional': 'uncond',
    'Point Cloud' : 'pc',
    'Text' : 'txt',
    'Sketch' : 'sketch',
    'SVR' : 'single_img',
    'MVR': 'multi_img'
}

# Dynamically registered functions 
def switch_model(user_state: dict, generate_mode: str,  model_index: int, offset: int):
    model_index =  (model_index + offset) % DEMO_NUM
    generate_mode = BACKEND_CONDITION_DICT[generate_mode]
    # Check if the condition has been generated
    if generate_mode not in user_state.keys():
        return model_index, gr.update(value='empty.obj', label=f'Wireframe{model_index + 1}'), gr.update(value='empty.obj', label=f'Solid{model_index + 1}'), gr.update( value=["app/examples/empty_examples/sample.stl", "app/examples/empty_examples/sample.ply", "app/examples/empty_examples/sample.step"], label=f'Models{model_index + 1}')
    
    # Check if model_index exceeds the number of current valid models 
    if model_index >= len(user_state[generate_mode]):
        return model_index, gr.update(value='empty.obj', label=f'Wireframe{model_index + 1}'), gr.update(value='empty.obj', label=f'Solid{model_index + 1}'), gr.update( value=["app/examples/empty_examples/sample.stl", "app/examples/empty_examples/sample.ply", "app/examples/empty_examples/sample.step"], label=f'Models{model_index + 1}')
    
    wireframe_model = user_state[generate_mode][model_index][WIREFRAME_FILE]
    solid_model = user_state[generate_mode][model_index][SOLID_FILE]
    if not (os.path.exists(wireframe_model) and os.path.exists(solid_model)):
        gr.Warning("The operation is too frequent!", title="Frequent Operation")
        return gr.update(), gr.update(), gr.update(), gr.update()
    return model_index, gr.Model3D(wireframe_model, label=f'Wireframe{model_index + 1}'), gr.Model3D(solid_model, label=f'Solid{model_index + 1}'), gr.Files(user_state[generate_mode][model_index], label=f'Models{model_index + 1}', interactive=False)
        
    
def set_generating_type(mode):
    return gr.Text(mode, visible=False)

def make_Chinese_descriptions():
    return (title_cn, 
            description_cn, 
            UncondLayout().get_Chinese_note(), 
            PCLayout().get_Chinese_note(), 
            SketchLayout().get_Chinese_note(), 
            TextLayout().get_Chinese_note(), 
            SVRLayout().get_Chinese_note(), 
            MVRLayout().get_Chinese_note(),
            notification_mvr_cn,
            gr.update(label="无条件"),
            gr.update(label="点云"),
            gr.update(label="草图"),
            gr.update(label="文本"),
            gr.update(label="单视图"),
            gr.update(label="多视图"),
            gr.update(label="多视图输入注意事项:"),
            gr.update(value="生成"),
            gr.update(value="生成"),
            gr.update(value="生成"),
            gr.update(value="生成"),
            gr.update(value="生成"),
            gr.update(value="生成"),
            gr.update(value="上一个"),
            gr.update(value="下一个"),
            gr.update(label="实体"),
            gr.update(label="线框"),
            gr.update(label="下载"),
            citation_cn
    )

def make_English_descriptions():
    return (title_en, 
            description_en, 
            UncondLayout().get_English_note(), 
            PCLayout().get_English_note(), 
            SketchLayout().get_English_note(), 
            TextLayout().get_English_note(), 
            SVRLayout().get_English_note(), 
            MVRLayout().get_English_note(),
            notification_mvr_en,
            gr.update(label="Unconditional"),
            gr.update(label="Point Cloud"),
            gr.update(label="Sketch"),
            gr.update(label="Text"),
            gr.update(label="SVR"),
            gr.update(label="MVR"),
            gr.update(label="MVR input notification:"),
            gr.update(value="generate"),
            gr.update(value="generate"),
            gr.update(value="generate"),
            gr.update(value="generate"),
            gr.update(value="generate"),
            gr.update(value="generate"),
            gr.update(value="Last"),
            gr.update(value="Next"),
            gr.update(label="Solid"),
            gr.update(label="Wireframe"),
            gr.update(label="Download"),
            citation_en
    )

# Declarations for pre-rendering
model_solid = gr.Model3D(label=f'Solid1', value='empty.obj', key="Solid")
model_wireframe = gr.Model3D(label=f'Wireframe1', value='empty.obj', key="Wireframe")
step_file = gr.File(label=f'Step', file_count='single', file_types=['.step'], interactive=False, visible=False)
download_files = gr.Files(label=f"Models1", value=["app/examples/empty_examples/sample.stl", "app/examples/empty_examples/sample.ply", "app/examples/empty_examples/sample.step"], interactive=False, key="Downloads")

input_tab = gr.Tabs()

generating_type = gr.Text("Unconditional",visible=False)

title_en = gr.Markdown(
        """       
        <h1 style='display: block; position: relative; text-align: center; text-rendering: optimizelegibility;'>
            <p class='title1' style='font-size: 100px; text-align: center;'>
            HoLa-BRep
            </p>
            <p class='title2' style='font-size: 32px; text-align: center;'>
            HoLa: B-Rep Generation using a Holistic Latent Representation
            </p>
            <p class='title3-responsive' style='font-size: 22px; text-align: center; display: flex; align-items: center; justify-content: center; gap: 12px; flex-wrap: nowrap;'>
                <span style="width: 100px; height: 1px; background-color: #999;"></span>
                <span style="color: #3b3891; padding: 4px 8px; border-radius: 8px; font-weight: bold;">
                ACM Trans. on Graphics (SIGGRAPH) 2025
                </span>
                <span style="width: 100px; height: 1px; background-color: #999;"></span>
            </p>
            <p class='title4' style='font-size: 20px; text-align: center;'>
            Yilin Liu, Duoteng Xu, Xingyao Yu, Xiang Xu, Daniel Cohen-Or, Hao Zhang, Hui Huang*
            </p>
            <p class='title5' style='font-size: 20px; text-align: center;'>
            (Visual Computing Research Center, Shenzhen University)
            </p>
        </h1>
        """
    )
title_cn = gr.Markdown(
        """    
        <h1 style='display: block; position: relative; text-align: center; text-rendering: optimizelegibility;'>
            <p class='title1' style='font-size: 100px; text-align: center;'>
            HoLa-BRep
            </p>
            <p class='title2' style='font-size: 32px; text-align: center;'>
            HoLa: B-Rep Generation using a Holistic Latent Representation
            </p>
            <p class='title3-responsive' style='font-size: 22px; text-align: center; display: flex; align-items: center; justify-content: center; gap: 12px; flex-wrap: nowrap;'>
                <span style="width: 100px; height: 1px; background-color: #999;"></span>
                <span style="color: #3b3891; padding: 4px 8px; border-radius: 8px; font-weight: bold;">
                ACM Trans. on Graphics (SIGGRAPH) 2025
                </span>
                <span style="width: 100px; height: 1px; background-color: #999;"></span>
            </p>
            <p class='title4' style='font-size: 20px; text-align: center;'>
                <span>刘奕林, 许铎腾, 余星耀, 徐翔, </span>
                <br class="mobile-break">
                <span>Daniel Cohen-Or, 张皓, 黄惠*</span>
            </p>
            <p class='title5' style='font-size: 20px; text-align: center;'>
            (深圳大学可视计算研究中心)
            </p>
        </h1>
        """
    )

description_en = gr.Markdown(
            """
            # <h2 class='heading'>What is HoLa-BRep?</h2>
            HoLa-BRep is a generative model that produces CAD models in boundary representation (BRep) based on various conditions, including point cloud, single-view image, multi-view images, single-view sketch or text description.
            It contains **1 unified** BRep variational encoder (VAE) to encode a BRep model's topological and geometric information into a holistic latent space, and a latent diffusion model (LDM) to generate such latent from multiple modalities. 
            Compared with the state-of-the-art method, HoLa-BRep only has 1 unified VAE and the corresponding latent space and 1 LDM for generation, so it is easier to train the model without any inter-dependency of the model. This is extremely useful when incorporating more modalities and even mix-modality training.

            # <h2 class='heading'>How to use it?</h2>
            + Please refer to the example below for more details. You can select the desired **modality** below and upload your own data. 
            + We generate **4** plausible BRep models for each input(**about 3 minutes**) and visualize them in the 3D viewer.
            + Try to explore the generated BRep models by rotating, zooming, and panning the 3D viewer, or **download** either the wireframe, surface mesh, or solid BRep model as OBJ or STEP files.

            # <h2 class='heading'>Project page</h2>
            + https://vcc.tech/research/2025/HolaBRep
            """
        )
description_cn = gr.Markdown(
            """
            # <h2 class='heading'>HoLa-BRep是什么?</h2>
            HoLa-BRep 是一个多模态CAD生成模型,它支持输入点云、单视角图像、多视角图像、单视角草图或文本描述等多种模态条件,生成边界表示 (BRep) 的 CAD 模型。
            它包含**1个统一**的 BRep变分自编码器 (VAE),可将 BRep 模型的拓扑和几何信息编码到一个结构化的低维隐空间,以及一个隐式扩散模型(LDM)用于从多种模态生成这种BRep结构化嵌入。
            与目前国内外领先技术相比,HoLa-BRep 只有1个 自编码器和1个扩散模型的特性极大地减少了训练的复杂程度并且利于向更大规模的训练拓展。同时这种单个结构化隐空间的设计模式也解决了现有方法多个模型相互依赖复杂的问题。在结合更多模态甚至混合模态训练时能显著提升训练效率。

            # <h2 class='heading'>如何使用?</h2>
            + 请参考下面的示例。您可以在下面选择所需的**模式**并上传自己的数据。
            + 我们会为每个输入生成 4 个可选的 BRep 模型(**大约3分钟**),并在 3D 查看器中可视化。
            + 你可以通过旋转、缩放和平移等操作查看生成的 BRep 模型,也可以将线框、曲面网格或实体 BRep 模型下载为 OBJ 或 STEP 文件。

            # <h2 class='heading'>项目主页</h2>
            + https://vcc.tech/research/2025/HolaBRep
            """
        )

citation_en = gr.Markdown(
        value=
        """
        <h2 class='heading' style='margin-top: 16px;'>Citation</h2>
        
        If our work is helpful for your research or applications, please cite us via:
        <br>
        ```
        @article{HolaBRep25,
        title={HoLa: B-Rep Generation using a Holistic Latent Representation},
        author={Yilin Liu and Duoteng Xu and Xinyao Yu and Xiang Xu and Daniel Cohen-Or and Hao Zhang and Hui Huang},
        journal={ACM Transactions on Graphics (SIGGRAPH)},
        volume={44},
        number={4},
        year={2025},
        }
        ```
        """,
        height=300,
        )

citation_cn = gr.Markdown(
        value=
        """
        <h2 class='heading' style='margin-top: 16px;'>引用</h2>
        
        如果我们的工作对您的研究或者应用有帮助,请通过以下方式进行引用:
        <br>
        
        ```
        @article{HolaBRep25,
        title={HoLa: B-Rep Generation using a Holistic Latent Representation},
        author={Yilin Liu and Duoteng Xu and Xinyao Yu and Xiang Xu and Daniel Cohen-Or and Hao Zhang and Hui Huang},
        journal={ACM Transactions on Graphics (SIGGRAPH)},
        volume={44},
        number={4},
        year={2025},
        }
        ```
        """,
        height=300,
        )

notification_mvr_en = gr.Markdown("**You can take and upload photos of objects as shown below.**")
notification_mvr_cn = gr.Markdown("**您可以按如下方式拍摄并上传物体照片**")

descriptions = []

# Main body
with gr.Blocks(js=force_light, theme=theme, css=custom_css) as inference:
    with gr.Row(elem_id="top-row"):
        gr.HTML(
                    """
                    <div style="text-align: left;">
                        <a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FYuXingyao%2FHoLa-BRep">
                            <img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FYuXingyao%2FHoLa-BRep&labelColor=%23d9e3f0&countColor=%23555555" />
                        </a>
                    </div>
                    """
                )
        
        with gr.Row(elem_id="button-group"):
            btn_cn = gr.Button("中文", elem_classes="small-button")
            btn_en = gr.Button("English", elem_classes="small-button")
            btn_cn.click(fn=make_Chinese_descriptions, outputs=descriptions)
            btn_en.click(fn=make_English_descriptions, outputs=descriptions)
                
    title_en.render()
    descriptions.append(title_en)
    
    description_en.render()
    descriptions.append(description_en)
    
    user_state = gr.BrowserState({
            "user_id" : None,
            "user_output_dir" : None,
        })

    generating_type.render()
    
    with gr.Row():
        # Input Column
        with gr.Column() as input_col:
            with gr.Tabs() as input_tab:
                with gr.Tab("Unconditional") as uncond_tab: 
                    uncond_layout = UncondLayout()
                    uncond_description = uncond_layout.get_English_note()
                    descriptions.append(uncond_description)
                    uncond_input_components = uncond_layout.get_input_components()
                    
                    uncond_button = gr.Button("Generate")
                    uncond_button.click(
                        fn=UncondGeneratingMethod().generate(), 
                        inputs=[*uncond_input_components, user_state],
                        outputs=[model_wireframe, model_solid, step_file, download_files, user_state]
                    )
                    
                with gr.Tab("Point Cloud") as pc_tab:
                    pc_layout = PCLayout()
                    pc_description = pc_layout.get_English_note()
                    descriptions.append(pc_description)
                    pc_input_components = pc_layout.get_input_components()
                    
                    pc_button = gr.Button("Generate")
                    pc_button.click(
                        fn=ConditionedGeneratingMethod(PointCloudDirector(), PointCloudProcessor(), DEMO_NUM).generate(), 
                        inputs=[user_state, *pc_input_components],
                        outputs=[user_state, model_wireframe, model_solid, step_file, download_files]
                    )
                    
                with gr.Tab("Sketch") as sketch_tab:
                    sketch_layout = SketchLayout()
                    sketch_description = sketch_layout.get_English_note()
                    descriptions.append(sketch_description)
                    sketch_input_components = sketch_layout.get_input_components()
                    
                    sketch_button = gr.Button("Generate")
                    sketch_button.click(
                        fn=ConditionedGeneratingMethod(SketchDirector(), SingleImageProcessor(), DEMO_NUM).generate(), 
                        inputs=[user_state, *sketch_input_components],
                        outputs=[user_state, model_wireframe, model_solid, step_file, download_files]
                    )
                    
                with gr.Tab("Text") as text_tab:
                    text_layout = TextLayout()
                    text_description = text_layout.get_English_note()
                    descriptions.append(text_description)
                    text_input_components = text_layout.get_input_components()
                    
                    text_button = gr.Button("Generate")
                    text_button.click(
                        fn=ConditionedGeneratingMethod(TextDirector(), TextProcessor(), DEMO_NUM).generate(), 
                        inputs=[user_state, *text_input_components],
                        outputs=[user_state, model_wireframe, model_solid, step_file, download_files]
                    )
                    
                with gr.Tab("SVR") as svr_tab:
                    svr_layout = SVRLayout()
                    svr_description = svr_layout.get_English_note()
                    descriptions.append(svr_description)
                    svr_input_components = svr_layout.get_input_components()
                    
                    svr_button = gr.Button("Generate")
                    svr_button.click(
                        fn=ConditionedGeneratingMethod(SVRDirector(), SingleImageProcessor(), DEMO_NUM).generate(), 
                        inputs=[user_state, *svr_input_components],
                        outputs=[user_state, model_wireframe, model_solid, step_file, download_files]
                    )
                    
                with gr.Tab("MVR") as mvr_tab:
                    mvr_layout = MVRLayout()
                    mvr_description = mvr_layout.get_English_note()
                    descriptions.append(mvr_description)
                    with gr.Accordion("MVR input notification:", open=False) as mvr_notification:
                        notification_mvr_en.render()
                        gr.Image(value='app/examples/mvr.png',show_download_button=False, show_label=False,show_share_button=False,interactive=False)

                    with gr.Row():
                        mvr_input_components = mvr_layout.get_input_components()
                    mvr_button = gr.Button("Generate")
                    mvr_button.click(
                        fn=ConditionedGeneratingMethod(MVRDirector(), MultiImageProcessor(), DEMO_NUM).generate(), 
                        inputs=[user_state, *mvr_input_components],
                        outputs=[user_state, model_wireframe, model_solid, step_file, download_files]
                    )
                
                uncond_tab.select(fn=set_generating_type, inputs=gr.Text(uncond_tab.label, visible=False), outputs=generating_type)
                pc_tab.select(fn=set_generating_type, inputs=gr.Text(pc_tab.label, visible=False), outputs=generating_type)
                sketch_tab.select(fn=set_generating_type, inputs=gr.Text(sketch_tab.label, visible=False), outputs=generating_type)
                svr_tab.select(fn=set_generating_type, inputs=gr.Text(svr_tab.label, visible=False), outputs=generating_type)
                mvr_tab.select(fn=set_generating_type, inputs=gr.Text(mvr_tab.label, visible=False), outputs=generating_type)
                text_tab.select(fn=set_generating_type, inputs=gr.Text(text_tab.label, visible=False), outputs=generating_type)
        
        descriptions.append(notification_mvr_en)
        descriptions.append(uncond_tab)
        descriptions.append(pc_tab)
        descriptions.append(sketch_tab)
        descriptions.append(text_tab)
        descriptions.append(svr_tab)
        descriptions.append(mvr_tab)
        descriptions.append(mvr_notification)
        descriptions.append(uncond_button)
        descriptions.append(pc_button)
        descriptions.append(sketch_button)
        descriptions.append(text_button)
        descriptions.append(svr_button)
        descriptions.append(mvr_button)
        
                  
        # Output demonstration 
        with gr.Column() as output_col:        
            with gr.Tabs():
                with gr.Tab("Solid") as solid_tab:
                    model_solid.render()
                with gr.Tab("Wireframe") as wireframe_tab:
                    model_wireframe.render()
                with gr.Tab("Download") as download_tab:
                    step_file.render()
                    download_files.render()
                    
            
            model_index = gr.Number(value=0, visible=False)
            with gr.Row() as switch_row:
                last_button = gr.Button("Last")
                next_button = gr.Button("Next")
                
            last_button.click(
                fn=switch_model,
                inputs=[user_state, generating_type, model_index, gr.Number(-1, visible=False)],
                outputs=[model_index, model_wireframe, model_solid, download_files])
            next_button.click(
                fn=switch_model,
                inputs=[user_state, generating_type, model_index, gr.Number(1, visible=False)],
                outputs=[model_index, model_wireframe, model_solid, download_files])
        
        descriptions.append(last_button)      
        descriptions.append(next_button)      
        descriptions.append(solid_tab)      
        descriptions.append(wireframe_tab)      
        descriptions.append(download_tab)  
            
    # Examples
    @gr.render(inputs=[generating_type], triggers=[generating_type.change, inference.load])
    def show_examples(generate_mode):
        if generate_mode == "Unconditional":
            pass
        
        elif generate_mode == "Point Cloud":
            pc_samples=[
                            [Path("app/examples/pc_examples") / sample_number / "pc.png"] for sample_number in os.listdir("app/examples/pc_examples") if sample_number != "take_photo.py"
                        ]
            with gr.Row():
                def dummy_pc_func(pic_path):
                    return Path(pic_path[0]).with_suffix(".ply").as_posix()
                for i in range(len(pc_samples)):
                    with gr.Column(min_width=100):
                        dummy_image = gr.Image(type="filepath", format="png", visible=False)
                        point_cloud_data = gr.Dataset(
                            label=f"Example{i+1}",
                            components=[dummy_image],
                            samples=[pc_samples[i]],
                            layout="table"
                        )
                        point_cloud_data.click(dummy_pc_func, inputs=point_cloud_data, outputs=pc_input_components)
                        
        elif generate_mode == "Text":
            text_data = gr.Dataset(
                components=text_input_components,
                samples=[
                    ["The object is a rectangular prism with two protruding L-shaped sections on opposite sides."],
                    ["This design creates a rectangular plate with rounded edges. The plate measures about 0.3214 units in length, 0.75 units in width, and 0.0429 units in height. The rounded edges give the plate a smooth, aesthetically pleasing appearance."],
                    ["The U-shaped bracket has a flat top and a curved bottom. The design begins by creating a new coordinate system with specific Euler angles and a translation vector. A two-dimensional sketch is then drawn, forming a complex shape with multiple lines and arcs. This sketch is scaled down, rotated, and translated to align with the coordinate system. The sketch is extruded to create a three-dimensional model. The final dimensions of the bracket are approximately 0.7 units in length, 0.75 units in width, and 0.19 units in height. The bracket is designed to integrate seamlessly with other components, providing a sturdy and functional structure."]
                    ],
                layout='table',
                label="Examples",
                headers=["Prompt"]
            )
            def dummy_func(text):
                return gr.Text(text[0])
            text_data.click(fn=dummy_func, inputs=text_data, outputs=text_input_components)
            
        elif generate_mode == "Sketch":
            with gr.Row():
                for i in range(12):
                    with gr.Column(min_width=100):
                        example = gr.Examples(
                            inputs=sketch_input_components,
                            examples=[
                                [f"app/examples/sketch_examples/{i + 1}.png"]
                                ],
                            label=f"Example{i+1}"
                            )
                        
        elif generate_mode == "SVR":
            with gr.Row():
                for i in range(12):
                    with gr.Column(min_width=100):
                        example = gr.Examples(
                            inputs=svr_input_components,
                            examples=[
                                [f"app/examples/svr_examples/{i + 1}.png"]
                                ],
                            label=f"Example{i+1}"
                            )
                       
        elif generate_mode == "MVR":
            with gr.Row():
                for i in range(4):
                    file_num = ["00017462", "00131007", "00189220", "00218887"]
                    with gr.Column():
                        example = gr.Examples(
                            inputs=mvr_input_components,
                            examples=[
                                [f"app/examples/mvr_examples/{file_num[i]}_img0.png", f"app/examples/mvr_examples/{file_num[i]}_img1.png", f"app/examples/mvr_examples/{file_num[i]}_img2.png", f"app/examples/mvr_examples/{file_num[i]}_img3.png"], 
                                ],
                            label=f"Example{i+1}"
                        )
                        
    citation_en.render()
    descriptions.append(citation_en)
                

if __name__ == "__main__":
    inference.launch(allowed_paths=['/data'], server_name='0.0.0.0', server_port=7860)