Spaces:
Runtime error
Runtime error
File size: 9,797 Bytes
7b127f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import time
import gradio as gr
from typing import List, Callable
from abc import ABC, abstractmethod
# Tab Interface
class AppLayout(ABC):
@abstractmethod
def get_English_note(self) -> gr.Markdown:
pass
@abstractmethod
def get_Chinese_note(self):
pass
@abstractmethod
def get_input_components(self) -> List[gr.Component]:
pass
# Concrete Implementation
class UncondLayout(AppLayout):
def get_English_note(self):
return gr.Markdown(
"""
**Note:**
+ We generate 4 BRep models from sampled noise in Gaussian distribution.
+ The model is trained on ABC dataset with a complexity range of 10~100 surface primitives.
+ Compared with the state-of-the-art BRep generation methods, HoLa-BRep has a 20%-40% improvement in the validity ratio of the generated models on both the DeepCAD dataset and the ABC dataset.
+ Try to adjust the seed for various results.
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
"""
)
def get_Chinese_note(self):
return gr.Markdown(
"""
**无条件生成介绍:**
+ 我们从高斯分布的采样噪声中生成 4 个 BRep 模型。
+ 模型在 ABC 数据集上进行训练,复杂度范围为 10~100 个表面基元。
+ 与最先进的 BRep 生成方法相比,HoLa-BRep 在 DeepCAD 数据集和 ABC 数据集上生成模型的有效率提高了 20%-40%。
+ 请随意调整采样种子,以获得不同的结果。
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
"""
)
def get_input_components(self) -> List[gr.Component]:
return [
gr.Number(
label="Seed",
value=int(time.time()),
minimum=0,
maximum=2**31-1,
step=1
),
]
class TextLayout(AppLayout):
def get_English_note(self):
return gr.Markdown(
"""
**Note:**
+ Text can be either abstract or descriptive.
+ We use a frozen gte-large-en-v1.5 to extract the feature from the text description.
+ While we use the existing Text2CAD dataset which contains more descriptive text, the out of distribution abstract text prompt also works.
<br>
<br>
"""
)
def get_Chinese_note(self):
return gr.Markdown(
"""
**文本条件生成介绍:**
+ HoLa-BRep支持简单抽象的文本和复杂的描述性文本。
+ 我们使用冻结的gte-large-en-v1.5从文本描述中提取特征。
+ 虽然我们使用的是包含更多复杂描述性文本的Text2CAD 数据集,但HoLa-BRep同样适用于简单抽象的文本输入。
+ **当前文本输入仅支持英文,敬请谅解。**
<br>
"""
)
def get_input_components(self) -> List[gr.Component]:
return [
gr.Textbox(lines = 8,max_length=1024, label="Text"),
]
class PCLayout(AppLayout):
def get_English_note(self):
return gr.Markdown(
"""
**Note:**
+ The input point cloud should be in .ply format with the position in -1~+1 and normal vectors.
+ The input point cloud can be either sparse or dense. We will downsample the point cloud into 2048 points.
+ After test-time augmentation the validity of the generated B-Rep model can reach ~98%.
+ We use a small and trainable PointNet++ to extract the feature from the point cloud.
+ This checkpoint is only for a clean point cloud without any noise.
+ Point cloud contains less ambiguity and usually yields the best conditional generation results compared to other modalities.
"""
)
def get_Chinese_note(self):
return gr.Markdown(
"""
**点云条件生成介绍:**
+ HoLa-BRep接受.ply 格式的点云输入,且坐标值应该归一化到-1~+1并带有法向信息。
+ HoLa-BRep接受稀疏或密集点云,网络处理点云时会将其降采样到2048 个点。
+ 经过测试时增强后点云条件生成的有效性可达98%以上。
+ 我们使用一个小型可训练的 PointNet++ 从点云中提取特征。
+ 目前开放权重仅支持没有任何噪声的点云。
+ 三维点云作为条件输入具有更少的歧义性,与其他条件相比通常能产生最佳的生成结果。
"""
)
def get_input_components(self):
return [
gr.File(
label='PC',
file_count='single',
),
]
class SketchLayout(AppLayout):
def get_English_note(self):
return gr.Markdown(
"""
**Note:**
+ The input sketch is in 1:1 ratio and on a white background, it will be further downsampled to 224*224 before feeding into the network.
+ The input sketch should be a perspective projection rather than an orthogonal projection.
+ We use a frozen DINOv2 to extract the feature from the sketch image.
+ We obtained the training sketches using wireframe rendering in OpenCascade.
<br>
<br>
"""
)
def get_Chinese_note(self):
return gr.Markdown(
"""
**线框图条件生成介绍:**
+ 输入线框图的长宽比应为1:1,背景为白色,系统处理时会降采样到224*224分辨率。
+ 输入的线框图应该是透视投影,而不是正交投影。
+ 我们使用冻结的 DINOv2 从线框图图像中提取特征。
+ 我们使用 OpenCascade 中的线框渲染来获取训练线框图。
<br>
<br>
"""
)
def get_input_components(self) -> List[gr.Component]:
return [
gr.Image(
label='Sketch',
type='filepath',
sources=["upload"],
interactive=True,
)
]
class SVRLayout(AppLayout):
def get_English_note(self):
return gr.Markdown(
"""
**Note:**
+ The input image is in 1:1 ratio and on a white background, it will be further downsampled to 224*224 before feeding into the network.
+ Keep the object in grey for better generation results.
+ We use a frozen DINOv2 to extract the feature from the sketch image.
+ We obtained the training images using solid rendering in OpenCascade.
<br>
<br>
"""
)
def get_Chinese_note(self):
return gr.Markdown(
"""
**单视角图片条件生成介绍:**
+ 输入图片的长宽比应为1:1,背景为白色,系统处理时会降采样到224*224分辨率。
+ 为了获得更好的生成效果,请将对象保持为灰色。
+ 我们使用冻结的 DINOv2 从草图图像中提取特征。
+ 我们使用 OpenCascade 中的实体渲染来获取训练图像。
<br>
<br>
"""
)
def get_input_components(self) -> List[gr.Component]:
return [
gr.Image(
label='Image',
type='filepath',
sources=["upload"],
interactive=True,
),
]
class MVRLayout(AppLayout):
def get_English_note(self):
return gr.Markdown(
"""
**Note:**
+ Similar to the single-view condition, the input image should be in 1:1 ratio and 4 fixed angles, **see the camera pose schematic**.
+ Image features are extracted by a frozen DINOv2 and averaged after adding the positional encoding on the camera **pose** embedding.
"""
)
def get_Chinese_note(self):
return gr.Markdown(
"""
**多视角图片条件生成介绍:**
+ 与单视角条件类似,输入图像应为 1:1长宽比和4 个固定角度,**见相机位姿示意图**。
+ 图像特征由冻结的 DINOv2 提取,并在对相机**位姿**特征进行位置编码后取平均值。
"""
)
def get_input_components(self) -> List[gr.Component]:
return [
gr.Image(
label='View1',
type='filepath',
interactive=True,
sources=["upload"]
),
gr.Image(
label='View2',
type='filepath',
interactive=True,
sources=["upload"]
),
gr.Image(
label='View3',
type='filepath',
interactive=True,
sources=["upload"]
),
gr.Image(
label='View4',
type='filepath',
interactive=True,
sources=["upload"]
),
]
|