Spaces:
Runtime error
Runtime error
File size: 9,649 Bytes
7b127f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import multiprocessing
import networkx as nx
import numpy as np
import argparse
import os
import trimesh
from tqdm import tqdm
import ray
from check_valid import check_step_valid_soild, load_data_with_prefix
from eval_brepgen import normalize_pc
from eval_unique_novel import *
def find_connected_components(matrix):
N = len(matrix)
visited = [False] * N
components = []
def dfs(idx, component):
stack = [idx]
while stack:
node = stack.pop()
if not visited[node]:
visited[node] = True
component.append(node)
for neighbor in range(N):
if matrix[node][neighbor] and not visited[neighbor]:
stack.append(neighbor)
for i in range(N):
if not visited[i]:
component = []
dfs(i, component)
components.append(component)
return components
def compute_unique(graph_list, atol=None, is_use_ray=False, batch_size=100000, num_max_split_batch=128):
N = len(graph_list)
identical_pairs = []
unique_graph_idx = list(range(N))
pair_0, pair_1 = np.triu_indices(N, k=1)
check_pairs = np.column_stack((pair_0, pair_1))
num_split_batch = len(check_pairs) // batch_size
if num_split_batch > 64:
num_split_batch = num_max_split_batch
batch_size = len(check_pairs) // num_split_batch
if not is_use_ray:
for idx1, idx2 in tqdm(check_pairs):
is_identical = is_graph_identical(graph_list[idx1], graph_list[idx2], atol=atol)
if is_identical:
unique_graph_idx.remove(idx2) if idx2 in unique_graph_idx else None
else:
N_batch = len(check_pairs) // batch_size
futures = []
for i in tqdm(range(N_batch)):
batch_pairs = check_pairs[i * batch_size: (i + 1) * batch_size]
batch_graph_pair = [(graph_list[idx1], graph_list[idx2]) for idx1, idx2 in batch_pairs]
futures.append(is_graph_identical_remote.remote(batch_graph_pair, atol))
results = ray.get(futures)
for batch_idx in tqdm(range(N_batch)):
for idx, is_identical in enumerate(results[batch_idx]):
if not is_identical:
continue
idx1, idx2 = check_pairs[batch_idx * batch_size + idx]
if idx2 in unique_graph_idx:
unique_graph_idx.remove(idx2)
identical_pairs.append((idx1, idx2))
return unique_graph_idx, identical_pairs
def test_check():
sample = np.random.rand(3, 32, 32, 3)
face1 = sample[[0, 1, 2]]
face2 = sample[[0, 2, 1]]
faces_adj1 = [[0, 1]]
faces_adj2 = [[0, 2]]
graph1 = build_graph(face1, faces_adj1)
graph2 = build_graph(face2, faces_adj2)
is_identical = is_graph_identical(graph1, graph2)
# 判断图是否相等
print("Graphs are equal" if is_identical else "Graphs are not equal")
def load_data_from_npz(data_npz_file):
data_npz = np.load(data_npz_file, allow_pickle=True)
data_npz1 = np.load(data_npz_file.replace("deepcad_32", "deepcad_train_v6"), allow_pickle=True)
# Brepgen
if 'face_edge_adj' in data_npz:
faces = data_npz['pred_face']
face_edge_adj = data_npz['face_edge_adj']
faces_adj_pair = []
N = face_edge_adj.shape[0]
for face_idx1 in range(N):
for face_idx2 in range(face_idx1 + 1, N):
face_edges1 = face_edge_adj[face_idx1]
face_edges2 = face_edge_adj[face_idx2]
if sorted((face_idx1, face_idx2)) in faces_adj_pair:
continue
if len(set(face_edges1).intersection(set(face_edges2))) > 0:
faces_adj_pair.append(sorted((face_idx1, face_idx2)))
return faces, faces_adj_pair
# Ours
if 'sample_points_faces' in data_npz:
face_points = data_npz['sample_points_faces'] # Face sample points (num_faces*20*20*3)
edge_face_connectivity = data_npz['edge_face_connectivity'] # (num_intersection, (id_edge, id_face1, id_face2))
elif 'pred_face' in data_npz and 'pred_edge_face_connectivity' in data_npz:
face_points = data_npz['pred_face']
edge_face_connectivity = data_npz['pred_edge_face_connectivity']
else:
raise ValueError("Invalid data format")
faces_adj_pair = []
for edge_idx, face_idx1, face_idx2 in edge_face_connectivity:
faces_adj_pair.append([face_idx1, face_idx2])
if face_points.shape[-1] != 3:
face_points = face_points[..., :3]
src_shape = face_points.shape
face_points = normalize_pc(face_points.reshape(-1, 3)).reshape(src_shape)
return face_points, faces_adj_pair
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--train_root", type=str, required=True)
parser.add_argument("--n_bit", type=int)
parser.add_argument("--atol", type=float)
parser.add_argument("--use_ray", action='store_true')
parser.add_argument("--load_batch_size", type=int, default=100)
parser.add_argument("--compute_batch_size", type=int, default=10000)
parser.add_argument("--txt", type=str, default=None)
parser.add_argument("--num_cpus", type=int, default=32)
args = parser.parse_args()
train_data_root = args.train_root
is_use_ray = args.use_ray
n_bit = args.n_bit
atol = args.atol
load_batch_size = args.load_batch_size
compute_batch_size = args.compute_batch_size
folder_list_txt = args.txt
num_cpus = args.num_cpus
if not n_bit and not atol:
raise ValueError("Must set either n_bit or atol")
if n_bit and atol:
raise ValueError("Cannot set both n_bit and atol")
if n_bit:
atol = None
if atol:
n_bit = -1
if folder_list_txt:
with open(folder_list_txt, "r") as f:
check_folders = [line.strip() for line in f.readlines()]
else:
check_folders = None
################################################## Unqiue #######################################################
# Load all the data files
print("Loading data files...")
data_npz_file_list = load_data_with_prefix(train_data_root, 'data.npz')
data_npz_file_list.sort()
if is_use_ray:
ray.init()
futures = []
graph_list = []
prefix_list = []
for i in tqdm(range(0, len(data_npz_file_list), load_batch_size)):
batch_data_npz_file_list = data_npz_file_list[i: i + load_batch_size]
futures.append(load_and_build_graph_remote.remote(batch_data_npz_file_list, check_folders, n_bit))
for future in tqdm(futures):
result = ray.get(future)
graph_list_batch, prefix_list_batch = result
graph_list.extend(graph_list_batch)
prefix_list.extend(prefix_list_batch)
ray.shutdown()
else:
graph_list, prefix_list = load_and_build_graph(data_npz_file_list, n_bit)
print(f"Loaded {len(graph_list)} data files")
# sort the graph list according the face num
graph_node_num = np.array([graph.number_of_nodes() for graph in graph_list])
identical_pairs_txt = train_data_root + f"_identical_pairs_{n_bit}bit.txt"
fp_identical_pairs = open(identical_pairs_txt, "w")
fp_identical_pairs.close()
novel_txt = train_data_root + f"_novel_{n_bit}bit.txt"
fp_novel = open(novel_txt, "w")
fp_novel.close()
if is_use_ray:
ray.init(_temp_dir=r"/mnt/d/img2brep/ray_temp")
unique_graph_idx_list = []
pbar = tqdm(range(3, 31))
for num_face in pbar:
print(f"Processing {num_face}")
pbar.set_description(f"Processing {num_face}")
fp_identical_pairs = open(identical_pairs_txt, "a")
fp_novel = open(novel_txt, "a")
print(f"face_num = {num_face}", file=fp_identical_pairs)
hits_graph_idx = np.where(graph_node_num == num_face)[0]
hits_graph = [graph_list[idx] for idx in tqdm(hits_graph_idx)]
hits_graph_prefix = [prefix_list[idx] for idx in hits_graph_idx]
if len(hits_graph) != 0:
local_unique_graph_idx_list, identical_pairs = compute_unique(hits_graph, atol, is_use_ray, compute_batch_size)
for unique_graph_idx in local_unique_graph_idx_list:
print(f"{hits_graph_prefix[unique_graph_idx]}", file=fp_novel)
local_unique_graph_idx_list = [hits_graph_idx[idx] for idx in local_unique_graph_idx_list]
unique_graph_idx_list.extend(local_unique_graph_idx_list)
if len(identical_pairs) > 0:
for idx1, idx2 in identical_pairs:
print(f"{hits_graph_prefix[idx1]} {hits_graph_prefix[idx2]}", file=fp_identical_pairs)
pbar.set_postfix({"Local Unique": len(local_unique_graph_idx_list) / len(hits_graph),
"Total Unique": len(unique_graph_idx_list) / len(graph_list), })
print(f"Unique: {len(local_unique_graph_idx_list)}/{len(hits_graph_idx)}"
f"={len(local_unique_graph_idx_list) / len(hits_graph_idx)}", file=fp_identical_pairs)
else:
print(f"face_num = {num_face} has no data", file=fp_identical_pairs)
fp_identical_pairs.close()
fp_novel.close()
if is_use_ray:
ray.shutdown()
print(f"Unique num: {len(unique_graph_idx_list)}/{len(graph_list)}={len(unique_graph_idx_list) / len(graph_list)}")
print(f"Identical pairs are saved to {identical_pairs_txt}")
print(f"Novel txt are saved to {novel_txt}")
print("Done")
if __name__ == "__main__":
main()
|