Spaces:
Runtime error
Runtime error
File size: 21,497 Bytes
7b127f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
import time, os, random, traceback, sys
from pathlib import Path
import matplotlib.pyplot as plt
import torch
import numpy as np
from OCC.Core.BRepAdaptor import BRepAdaptor_Curve
from tqdm import tqdm
import trimesh
import argparse
# import pandas as pd
from chamferdist import ChamferDistance
from OCC.Core.STEPControl import STEPControl_Reader
from OCC.Core.TopExp import TopExp_Explorer
from OCC.Core.TopAbs import TopAbs_VERTEX, TopAbs_EDGE, TopAbs_FACE
from OCC.Core.BRep import BRep_Tool
from OCC.Core.gp import gp_Pnt
from OCC.Core.IFSelect import IFSelect_RetDone
from OCC.Extend.DataExchange import read_step_file, write_step_file, write_stl_file
from OCC.Core.BRepCheck import BRepCheck_Analyzer
import ray
import shutil
from OCC.Core.TopoDS import TopoDS_Solid, TopoDS_Shell
from OCC.Core.TopAbs import TopAbs_COMPOUND, TopAbs_SHELL, TopAbs_SOLID
from diffusion.utils import get_primitives, get_triangulations, get_points_along_edge, get_curve_length
from eval.check_valid import check_step_valid_soild
def is_vertex_close(p1, p2, tol=1e-3):
return np.linalg.norm(np.array(p1) - np.array(p2)) < tol
def compute_statistics(eval_root, v_only_valid, listfile):
all_folders = [folder for folder in os.listdir(eval_root) if os.path.isdir(os.path.join(eval_root, folder))]
if listfile != '':
valid_names = [item.strip() for item in open(listfile, 'r').readlines()]
all_folders = list(set(all_folders) & set(valid_names))
all_folders.sort()
exception_folders = []
results = {
"prefix": []
}
for folder_name in tqdm(all_folders):
if not os.path.exists(os.path.join(eval_root, folder_name, 'eval.npz')):
exception_folders.append(folder_name)
continue
item = np.load(os.path.join(eval_root, folder_name, 'eval.npz'), allow_pickle=True)['results'].item()
if item['num_recon_face'] == 1:
exception_folders.append(folder_name)
if v_only_valid:
continue
if v_only_valid and not os.path.exists(os.path.join(eval_root, folder_name, 'success.txt')):
continue
results["prefix"].append(folder_name)
for key in item:
if key not in results:
results[key] = []
results[key].append(item[key])
if len(exception_folders) != 0:
print(f"Found exception folders: {exception_folders}")
for key in results:
results[key] = np.array(results[key])
results_str = ""
results_str += "Number\n"
results_str += f"Vertices: {np.mean(results['num_recon_vertex'])}/{np.mean(results['num_gt_vertex'])}\n"
results_str += f"Edge: {np.mean(results['num_recon_edge'])}/{np.mean(results['num_gt_edge'])}\n"
results_str += f"Face: {np.mean(results['num_recon_face'])}/{np.mean(results['num_gt_face'])}\n"
results_str += "Chamfer\n"
results_str += f"Vertices: {np.mean(results['vertex_cd'])}\n"
results_str += f"Edge: {np.mean(results['edge_cd'])}\n"
results_str += f"Face: {np.mean(results['face_cd'])}\n"
results_str += "Detection\n"
results_str += f"Vertices: {np.mean(results['vertex_fscore'])}\n"
results_str += f"Edge: {np.mean(results['edge_fscore'])}\n"
results_str += f"Face: {np.mean(results['face_fscore'])}\n"
results_str += "Topology\n"
results_str += f"FE: {np.mean(results['fe_fscore'])}\n"
results_str += f"EV: {np.mean(results['ev_fscore'])}\n"
results_str += "Accuracy\n"
results_str += f"Vertices: {np.mean(results['vertex_acc_cd'])}\n"
results_str += f"Edge: {np.mean(results['edge_acc_cd'])}\n"
results_str += f"Face: {np.mean(results['face_acc_cd'])}\n"
results_str += f"FE: {np.mean(results['fe_pre'])}\n"
results_str += f"EV: {np.mean(results['ev_pre'])}\n"
results_str += "Completeness\n"
results_str += f"Vertices: {np.mean(results['vertex_com_cd'])}\n"
results_str += f"Edge: {np.mean(results['edge_com_cd'])}\n"
results_str += f"Face: {np.mean(results['face_com_cd'])}\n"
results_str += f"FE: {np.mean(results['fe_rec'])}\n"
results_str += f"EV: {np.mean(results['ev_rec'])}\n"
print(results_str)
print("{:.4f} {:.4f} {:.4f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f}".format(
np.mean(results['vertex_cd']), np.mean(results['edge_cd']), np.mean(results['face_cd']),
np.mean(results['vertex_fscore']), np.mean(results['edge_fscore']), np.mean(results['face_fscore']),
np.mean(results['fe_fscore']), np.mean(results['ev_fscore']),
))
print(
"{:.0f}/{:.0f} {:.0f}/{:.0f} {:.0f}/{:.0f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f}".format(
np.mean(results['num_recon_vertex']), np.mean(results['num_gt_vertex']),
np.mean(results['num_recon_edge']), np.mean(results['num_gt_edge']),
np.mean(results['num_recon_face']), np.mean(results['num_gt_face']),
np.mean(results['vertex_acc_cd']), np.mean(results['edge_acc_cd']), np.mean(results['face_acc_cd']),
np.mean(results['vertex_com_cd']), np.mean(results['edge_com_cd']), np.mean(results['face_com_cd']),
np.mean(results['vertex_pre']), np.mean(results['edge_pre']), np.mean(results['face_pre']),
np.mean(results['fe_pre']), np.mean(results['ev_pre']),
np.mean(results['vertex_rec']), np.mean(results['edge_rec']), np.mean(results['face_rec']),
np.mean(results['fe_rec']), np.mean(results['ev_rec'])
))
# print(f"{len(all_folders)-len(exception_folders)}/{len(all_folders)} are valid")
print(f"{results['face_cd'].shape[0]}/{len(all_folders)} are valid")
def draw():
face_chamfer = results['face_cd']
fig, ax = plt.subplots(1, 1, figsize=(6, 6))
ax.hist(face_chamfer, bins=50, range=(0, 0.05), density=True, alpha=0.5, color='b', label='Face')
ax.set_title('Face Chamfer Distance')
ax.set_xlabel('Chamfer Distance')
ax.set_ylabel('Density')
ax.legend()
plt.savefig(str(eval_root) + "_face_chamfer.png", dpi=600)
# plt.show()
draw()
pass
def get_data(v_shape, v_num_per_m=100):
faces, face_points, edges, edge_points, vertices, vertex_points = [], [], [], [], [], []
for face in get_primitives(v_shape, TopAbs_FACE, v_remove_half=True):
try:
v, f = get_triangulations(face, 0.1, 0.1)
if len(f) == 0:
print("Ignore 0 face")
continue
except:
print("Ignore 1 face")
continue
mesh_item = trimesh.Trimesh(vertices=v, faces=f)
area = mesh_item.area
num_samples = min(max(int(v_num_per_m * v_num_per_m * area), 5), 10000)
pc_item, id_face = trimesh.sample.sample_surface(mesh_item, num_samples)
normals = mesh_item.face_normals[id_face]
faces.append(face)
face_points.append(np.concatenate((pc_item, normals), axis=1))
for edge in get_primitives(v_shape, TopAbs_EDGE, v_remove_half=True):
length = get_curve_length(edge)
num_samples = min(max(int(v_num_per_m * length), 5), 10000)
v = get_points_along_edge(edge, num_samples)
edges.append(edge)
edge_points.append(v)
for vertex in get_primitives(v_shape, TopAbs_VERTEX, v_remove_half=True):
vertices.append(vertex)
vertex_points.append(np.asarray([BRep_Tool.Pnt(vertex).Coord()]))
vertex_points = np.stack(vertex_points, axis=0)
return faces, face_points, edges, edge_points, vertices, vertex_points
def get_chamfer(v_recon_points, v_gt_points):
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
chamfer_distance = ChamferDistance()
recon_fp = torch.from_numpy(np.concatenate(v_recon_points, axis=0)).float().to(device)[:, :3]
gt_fp = torch.from_numpy(np.concatenate(v_gt_points, axis=0)).float().to(device)[:, :3]
fp_acc_cd = chamfer_distance(recon_fp.unsqueeze(0), gt_fp.unsqueeze(0),
bidirectional=False, point_reduction='mean').cpu().item()
fp_com_cd = chamfer_distance(gt_fp.unsqueeze(0), recon_fp.unsqueeze(0),
bidirectional=False, point_reduction='mean').cpu().item()
fp_cd = fp_acc_cd + fp_com_cd
return fp_acc_cd, fp_com_cd, fp_cd
def get_match_ids(v_recon_points, v_gt_points):
from scipy.optimize import linear_sum_assignment
cost = np.zeros([len(v_recon_points), len(v_gt_points)]) # recon to gt
for i in range(cost.shape[0]):
for j in range(cost.shape[1]):
_, _, cost[i][j] = get_chamfer(
v_recon_points[i][..., :3][None, ..., :3],
v_gt_points[j][..., :3][None, ..., :3]
)
recon_indices, recon_to_gt = linear_sum_assignment(cost)
result_recon2gt = -1 * np.ones(len(v_recon_points), dtype=np.int32)
result_gt2recon = -1 * np.ones(len(v_gt_points), dtype=np.int32)
result_recon2gt[recon_indices] = recon_to_gt
result_gt2recon[recon_to_gt] = recon_indices
return result_recon2gt, result_gt2recon, cost
def get_detection(id_recon_gt, id_gt_recon, cost_matrix, v_threshold=0.1):
true_positive = 0
for i in range(len(id_recon_gt)):
if id_recon_gt[i] != -1 and cost_matrix[i, id_recon_gt[i]] < v_threshold:
true_positive += 1
precision = true_positive / (len(id_recon_gt) + 1e-6)
recall = true_positive / (len(id_gt_recon) + 1e-6)
return 2 * precision * recall / (precision + recall + 1e-6), precision, recall
def get_topology(faces, edges, vertices):
recon_face_edge, recon_edge_vertex = {}, {}
for i_face, face in enumerate(faces):
face_edge = []
for edge in get_primitives(face, TopAbs_EDGE):
face_edge.append(edges.index(edge) if edge in edges else edges.index(edge.Reversed()))
recon_face_edge[i_face] = list(set(face_edge))
for i_edge, edge in enumerate(edges):
edge_vertex = []
for vertex in get_primitives(edge, TopAbs_VERTEX):
edge_vertex.append(vertices.index(vertex) if vertex in vertices else vertices.index(vertex.Reversed()))
recon_edge_vertex[i_edge] = list(set(edge_vertex))
return recon_face_edge, recon_edge_vertex
def get_topo_detection(recon_face_edge, gt_face_edge, id_recon_gt_face, id_recon_gt_edge):
positive = 0
for i_recon_face, edges in recon_face_edge.items():
i_gt_face = id_recon_gt_face[i_recon_face]
if i_gt_face == -1:
continue
for i_edge in edges:
if id_recon_gt_edge[i_edge] in gt_face_edge[i_gt_face]:
positive += 1
precision = positive / (sum([len(edges) for edges in recon_face_edge.values()]) + 1e-6)
recall = positive / (sum([len(edges) for edges in gt_face_edge.values()]) + 1e-6)
return 2 * precision * recall / (precision + recall + 1e-6), precision, recall
def eval_one_with_try(eval_root, gt_root, folder_name, is_point2cad=False, v_num_per_m=100):
try:
eval_one(eval_root, gt_root, folder_name, is_point2cad, v_num_per_m)
except:
pass
def eval_one(eval_root, gt_root, folder_name, is_point2cad=False, v_num_per_m=100):
if os.path.exists(eval_root / folder_name / 'error.txt'):
os.remove(eval_root / folder_name / 'error.txt')
if os.path.exists(eval_root / folder_name / 'eval.npz'):
os.remove(eval_root / folder_name / 'eval.npz')
# At least have fall_back_mesh
step_name = "recon_brep.step"
if is_point2cad:
if not (eval_root / folder_name / "clipped/mesh_transformed.ply").exists():
print(f"Error: {folder_name} does not have mesh_transformed")
return
mesh = trimesh.load(eval_root / folder_name / "clipped/mesh_transformed.ply")
color = np.stack((
[item[1] for item in mesh.metadata['_ply_raw']['face']['data']],
[item[2] for item in mesh.metadata['_ply_raw']['face']['data']],
[item[3] for item in mesh.metadata['_ply_raw']['face']['data']],
), axis=1)
color_map = [list(map(lambda item:int(item),item.strip().split(" "))) for item in open("src/brepnet/eval/point2cad_color.txt").readlines()]
index = np.asarray([color_map.index(item.tolist()) for item in color])
recon_face_points = [None]*(index.max()+1)
for i in range(index.max() + 1):
item_faces = mesh.faces[index == i]
item_mesh = trimesh.Trimesh(vertices=mesh.vertices, faces=item_faces)
num_samples = min(max(int(item_mesh.area * v_num_per_m * v_num_per_m), 5), 10000)
pc_item, id_face = trimesh.sample.sample_surface(item_mesh, num_samples)
normals = item_mesh.face_normals[id_face]
recon_face_points[i] = np.concatenate((pc_item, normals), axis=1)
if not (eval_root / folder_name / "clipped/curve_points.xyzc").exists():
print(f"Error: {folder_name} does not have curve_points")
return
curve_points = np.asarray([list(map(lambda item: float(item),item.strip().split(" "))) for item in open(eval_root / folder_name / "clipped/curve_points.xyzc").readlines()])
num_curves = int(curve_points.max(axis=0)[3]) + 1
recon_edge_points = [None]*num_curves
for i in range(num_curves):
item_points = curve_points[curve_points[:,3] == i][:,:3]
recon_edge_points[i] = item_points
if (eval_root / folder_name / "clipped/remove_duplicates_corners.ply").exists():
pc = trimesh.load(eval_root / folder_name / "clipped/remove_duplicates_corners.ply")
recon_vertex_points = pc.vertices[:,None]
else:
recon_vertex_points = np.asarray((0,0,0), dtype=np.float32)[None,None]
recon_face_edge = {}
recon_edge_vertex = {}
EV_mode = False
for items in open(eval_root / folder_name / 'topo/topo_fix.txt', 'r').readlines():
items = items.strip().split(" ")
if items[0] == "EV":
EV_mode = True
continue
if len(items) == 1:
continue
if not EV_mode:
recon_face_edge[int(items[0])] = list(map(lambda item: int(item), items[1:]))
else:
recon_edge_vertex[int(items[0])] = list(map(lambda item: int(item), items[1:]))
pass
else:
try:
# Face chamfer distance
if (eval_root / folder_name / step_name).exists():
valid, recon_shape = check_step_valid_soild(eval_root / folder_name / step_name, return_shape=True)
else:
print(f"Error: {folder_name} does not have {step_name}")
raise
if recon_shape is None:
print(f"Error: {folder_name} 's {step_name} is not valid")
raise
# Get data
recon_faces, recon_face_points, recon_edges, recon_edge_points, recon_vertices, recon_vertex_points = get_data(
recon_shape, v_num_per_m)
# Topology
recon_face_edge, recon_edge_vertex = get_topology(recon_faces, recon_edges, recon_vertices)
except:
recon_face_points = [np.zeros((1, 6), dtype=np.float32)]
recon_edge_points = [np.zeros((1, 6), dtype=np.float32)]
recon_vertex_points = [np.zeros((1, 3), dtype=np.float32)]
recon_face_edge = {}
recon_edge_vertex = {}
# GT
_, gt_shape = check_step_valid_soild(gt_root / folder_name / "normalized_shape.step", return_shape=True)
gt_faces, gt_face_points, gt_edges, gt_edge_points, gt_vertices, gt_vertex_points = get_data(gt_shape, v_num_per_m)
gt_face_edge, gt_edge_vertex = get_topology(gt_faces, gt_edges, gt_vertices)
# Chamfer
face_acc_cd, face_com_cd, face_cd = get_chamfer(recon_face_points, gt_face_points)
edge_acc_cd, edge_com_cd, edge_cd = get_chamfer(recon_edge_points, gt_edge_points)
vertex_acc_cd, vertex_com_cd, vertex_cd = get_chamfer(recon_vertex_points, gt_vertex_points)
# Detection
id_recon_gt_face, id_gt_recon_face, cost_face = get_match_ids(recon_face_points, gt_face_points)
id_recon_gt_edge, id_gt_recon_edge, cost_edge = get_match_ids(recon_edge_points, gt_edge_points)
id_recon_gt_vertex, id_gt_recon_vertex, cost_vertices = get_match_ids(recon_vertex_points, gt_vertex_points)
face_fscore, face_pre, face_rec = get_detection(id_recon_gt_face, id_gt_recon_face, cost_face)
edge_fscore, edge_pre, edge_rec = get_detection(id_recon_gt_edge, id_gt_recon_edge, cost_edge)
vertex_fscore, vertex_pre, vertex_rec = get_detection(id_recon_gt_vertex, id_gt_recon_vertex, cost_vertices)
fe_fscore, fe_pre, fe_rec = get_topo_detection(recon_face_edge, gt_face_edge, id_recon_gt_face, id_recon_gt_edge)
ev_fscore, ev_pre, ev_rec = get_topo_detection(recon_edge_vertex, gt_edge_vertex, id_recon_gt_edge,
id_recon_gt_vertex)
results = {
"face_cd": face_cd,
"edge_cd": edge_cd,
"vertex_cd": vertex_cd,
"face_fscore": face_fscore,
"edge_fscore": edge_fscore,
"vertex_fscore": vertex_fscore,
"fe_fscore": fe_fscore,
"ev_fscore": ev_fscore,
"face_acc_cd": face_acc_cd,
"edge_acc_cd": edge_acc_cd,
"vertex_acc_cd": vertex_acc_cd,
"face_com_cd": face_com_cd,
"edge_com_cd": edge_com_cd,
"vertex_com_cd": vertex_com_cd,
"fe_pre": fe_pre,
"ev_pre": ev_pre,
"fe_rec": fe_rec,
"ev_rec": ev_rec,
"vertex_pre": vertex_pre,
"edge_pre": edge_pre,
"face_pre": face_pre,
"vertex_rec": vertex_rec,
"edge_rec": edge_rec,
"face_rec": face_rec,
"num_recon_face": len(recon_face_points),
"num_gt_face": len(gt_face_points),
"num_recon_edge": len(recon_edge_points),
"num_gt_edge": len(gt_edge_points),
"num_recon_vertex": len(recon_vertex_points),
"num_gt_vertex": len(gt_vertex_points),
}
np.savez_compressed(eval_root / folder_name / 'eval.npz', results=results, allow_pickle=True)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Evaluate The Generated Brep')
parser.add_argument('--eval_root', type=str, required=True)
parser.add_argument('--gt_root', type=str, required=True)
parser.add_argument('--use_ray', action='store_true')
parser.add_argument('--num_cpus', type=int, default=16)
parser.add_argument('--prefix', type=str, default='')
parser.add_argument('--list', type=str, default='')
parser.add_argument('--from_scratch', action='store_true')
parser.add_argument('--is_point2cad', action='store_true')
parser.add_argument('--only_valid', action='store_true')
args = parser.parse_args()
eval_root = Path(args.eval_root)
gt_root = Path(args.gt_root)
is_use_ray = args.use_ray
num_cpus = args.num_cpus
listfile = args.list
from_scratch = args.from_scratch
is_point2cad = args.is_point2cad
only_valid = args.only_valid
if not os.path.exists(eval_root):
raise ValueError(f"Data root path {eval_root} does not exist.")
if not os.path.exists(gt_root):
raise ValueError(f"Output root path {gt_root} does not exist.")
if args.prefix != '':
eval_one(eval_root, gt_root, args.prefix, is_point2cad)
exit()
all_folders = [folder for folder in os.listdir(eval_root) if os.path.isdir(eval_root / folder)]
ori_length = len(all_folders)
if listfile != '':
valid_names = [item.strip() for item in open(listfile, 'r').readlines()]
all_folders = list(set(all_folders) & set(valid_names))
all_folders.sort()
print(f"Total {len(all_folders)}/{ori_length} folders to evaluate")
if not from_scratch:
print("Filtering the folders that have eval.npz")
all_folders = [folder for folder in all_folders if not os.path.exists(eval_root / folder / 'eval.npz')]
print(f"Total {len(all_folders)} folders to compute after caching")
if not is_use_ray:
# random.shuffle(self.folder_names)
for i in tqdm(range(len(all_folders))):
eval_one(eval_root, gt_root, all_folders[i], is_point2cad)
else:
ray.init(
dashboard_host="0.0.0.0",
dashboard_port=8080,
num_cpus=num_cpus,
# local_mode=True
)
eval_one_remote = ray.remote(max_retries=0)(eval_one_with_try)
tasks = []
timeout_cancel_list = []
for i in range(len(all_folders)):
tasks.append(eval_one_remote.remote(eval_root, gt_root, all_folders[i], is_point2cad))
results = []
for i in tqdm(range(len(all_folders))):
try:
results.append(ray.get(tasks[i], timeout=60 * 3))
except ray.exceptions.GetTimeoutError:
results.append(None)
timeout_cancel_list.append(all_folders[i])
ray.cancel(tasks[i])
except:
results.append(None)
results = [item for item in results if item is not None]
print(f"Cancel for timeout: {timeout_cancel_list}")
print("Computing statistics...")
compute_statistics(eval_root, only_valid, listfile)
print("Done")
|