File size: 21,497 Bytes
7b127f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
import time, os, random, traceback, sys
from pathlib import Path

import matplotlib.pyplot as plt
import torch
import numpy as np

from OCC.Core.BRepAdaptor import BRepAdaptor_Curve
from tqdm import tqdm
import trimesh
import argparse

# import pandas as pd
from chamferdist import ChamferDistance

from OCC.Core.STEPControl import STEPControl_Reader
from OCC.Core.TopExp import TopExp_Explorer
from OCC.Core.TopAbs import TopAbs_VERTEX, TopAbs_EDGE, TopAbs_FACE
from OCC.Core.BRep import BRep_Tool
from OCC.Core.gp import gp_Pnt
from OCC.Core.IFSelect import IFSelect_RetDone
from OCC.Extend.DataExchange import read_step_file, write_step_file, write_stl_file
from OCC.Core.BRepCheck import BRepCheck_Analyzer

import ray
import shutil

from OCC.Core.TopoDS import TopoDS_Solid, TopoDS_Shell
from OCC.Core.TopAbs import TopAbs_COMPOUND, TopAbs_SHELL, TopAbs_SOLID

from diffusion.utils import get_primitives, get_triangulations, get_points_along_edge, get_curve_length
from eval.check_valid import check_step_valid_soild


def is_vertex_close(p1, p2, tol=1e-3):
    return np.linalg.norm(np.array(p1) - np.array(p2)) < tol


def compute_statistics(eval_root, v_only_valid, listfile):
    all_folders = [folder for folder in os.listdir(eval_root) if os.path.isdir(os.path.join(eval_root, folder))]
    if listfile != '':
        valid_names = [item.strip() for item in open(listfile, 'r').readlines()]
        all_folders = list(set(all_folders) & set(valid_names))
        all_folders.sort()
    exception_folders = []
    results = {
        "prefix": []
    }
    for folder_name in tqdm(all_folders):
        if not os.path.exists(os.path.join(eval_root, folder_name, 'eval.npz')):
            exception_folders.append(folder_name)
            continue

        item = np.load(os.path.join(eval_root, folder_name, 'eval.npz'), allow_pickle=True)['results'].item()
        if item['num_recon_face'] == 1:
            exception_folders.append(folder_name)
            if v_only_valid:
                continue

        if v_only_valid and not os.path.exists(os.path.join(eval_root, folder_name, 'success.txt')):
            continue
        
        results["prefix"].append(folder_name)
        for key in item:
            if key not in results:
                results[key] = []
            results[key].append(item[key])

    if len(exception_folders) != 0:
        print(f"Found exception folders: {exception_folders}")

    for key in results:
        results[key] = np.array(results[key])

    results_str = ""
    results_str += "Number\n"
    results_str += f"Vertices: {np.mean(results['num_recon_vertex'])}/{np.mean(results['num_gt_vertex'])}\n"
    results_str += f"Edge: {np.mean(results['num_recon_edge'])}/{np.mean(results['num_gt_edge'])}\n"
    results_str += f"Face: {np.mean(results['num_recon_face'])}/{np.mean(results['num_gt_face'])}\n"

    results_str += "Chamfer\n"
    results_str += f"Vertices: {np.mean(results['vertex_cd'])}\n"
    results_str += f"Edge: {np.mean(results['edge_cd'])}\n"
    results_str += f"Face: {np.mean(results['face_cd'])}\n"

    results_str += "Detection\n"
    results_str += f"Vertices: {np.mean(results['vertex_fscore'])}\n"
    results_str += f"Edge: {np.mean(results['edge_fscore'])}\n"
    results_str += f"Face: {np.mean(results['face_fscore'])}\n"

    results_str += "Topology\n"
    results_str += f"FE: {np.mean(results['fe_fscore'])}\n"
    results_str += f"EV: {np.mean(results['ev_fscore'])}\n"

    results_str += "Accuracy\n"
    results_str += f"Vertices: {np.mean(results['vertex_acc_cd'])}\n"
    results_str += f"Edge: {np.mean(results['edge_acc_cd'])}\n"
    results_str += f"Face: {np.mean(results['face_acc_cd'])}\n"
    results_str += f"FE: {np.mean(results['fe_pre'])}\n"
    results_str += f"EV: {np.mean(results['ev_pre'])}\n"

    results_str += "Completeness\n"
    results_str += f"Vertices: {np.mean(results['vertex_com_cd'])}\n"
    results_str += f"Edge: {np.mean(results['edge_com_cd'])}\n"
    results_str += f"Face: {np.mean(results['face_com_cd'])}\n"
    results_str += f"FE: {np.mean(results['fe_rec'])}\n"
    results_str += f"EV: {np.mean(results['ev_rec'])}\n"
    print(results_str)
    print("{:.4f} {:.4f} {:.4f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f}".format(
        np.mean(results['vertex_cd']), np.mean(results['edge_cd']), np.mean(results['face_cd']),
        np.mean(results['vertex_fscore']), np.mean(results['edge_fscore']), np.mean(results['face_fscore']),
        np.mean(results['fe_fscore']), np.mean(results['ev_fscore']),
    ))
    print(
        "{:.0f}/{:.0f} {:.0f}/{:.0f} {:.0f}/{:.0f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f} {:.2f}".format(
            np.mean(results['num_recon_vertex']), np.mean(results['num_gt_vertex']),
            np.mean(results['num_recon_edge']), np.mean(results['num_gt_edge']),
            np.mean(results['num_recon_face']), np.mean(results['num_gt_face']),
            np.mean(results['vertex_acc_cd']), np.mean(results['edge_acc_cd']), np.mean(results['face_acc_cd']),
            np.mean(results['vertex_com_cd']), np.mean(results['edge_com_cd']), np.mean(results['face_com_cd']),
            np.mean(results['vertex_pre']), np.mean(results['edge_pre']), np.mean(results['face_pre']),
            np.mean(results['fe_pre']), np.mean(results['ev_pre']),
            np.mean(results['vertex_rec']), np.mean(results['edge_rec']), np.mean(results['face_rec']),
            np.mean(results['fe_rec']), np.mean(results['ev_rec'])
        ))
    # print(f"{len(all_folders)-len(exception_folders)}/{len(all_folders)} are valid")
    print(f"{results['face_cd'].shape[0]}/{len(all_folders)} are valid")

    def draw():
        face_chamfer = results['face_cd']
        fig, ax = plt.subplots(1, 1, figsize=(6, 6))
        ax.hist(face_chamfer, bins=50, range=(0, 0.05), density=True, alpha=0.5, color='b', label='Face')
        ax.set_title('Face Chamfer Distance')
        ax.set_xlabel('Chamfer Distance')
        ax.set_ylabel('Density')
        ax.legend()
        plt.savefig(str(eval_root) + "_face_chamfer.png", dpi=600)
        # plt.show()

    draw()
    pass


def get_data(v_shape, v_num_per_m=100):
    faces, face_points, edges, edge_points, vertices, vertex_points = [], [], [], [], [], []
    for face in get_primitives(v_shape, TopAbs_FACE, v_remove_half=True):
        try:
            v, f = get_triangulations(face, 0.1, 0.1)
            if len(f) == 0:
                print("Ignore 0 face")
                continue
        except:
            print("Ignore 1 face")
            continue
        mesh_item = trimesh.Trimesh(vertices=v, faces=f)
        area = mesh_item.area
        num_samples = min(max(int(v_num_per_m * v_num_per_m * area), 5), 10000)
        pc_item, id_face = trimesh.sample.sample_surface(mesh_item, num_samples)
        normals = mesh_item.face_normals[id_face]
        faces.append(face)
        face_points.append(np.concatenate((pc_item, normals), axis=1))
    for edge in get_primitives(v_shape, TopAbs_EDGE, v_remove_half=True):
        length = get_curve_length(edge)
        num_samples = min(max(int(v_num_per_m * length), 5), 10000)
        v = get_points_along_edge(edge, num_samples)
        edges.append(edge)
        edge_points.append(v)
    for vertex in get_primitives(v_shape, TopAbs_VERTEX, v_remove_half=True):
        vertices.append(vertex)
        vertex_points.append(np.asarray([BRep_Tool.Pnt(vertex).Coord()]))
    vertex_points = np.stack(vertex_points, axis=0)
    return faces, face_points, edges, edge_points, vertices, vertex_points


def get_chamfer(v_recon_points, v_gt_points):
    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    chamfer_distance = ChamferDistance()
    recon_fp = torch.from_numpy(np.concatenate(v_recon_points, axis=0)).float().to(device)[:, :3]
    gt_fp = torch.from_numpy(np.concatenate(v_gt_points, axis=0)).float().to(device)[:, :3]
    fp_acc_cd = chamfer_distance(recon_fp.unsqueeze(0), gt_fp.unsqueeze(0),
                                 bidirectional=False, point_reduction='mean').cpu().item()
    fp_com_cd = chamfer_distance(gt_fp.unsqueeze(0), recon_fp.unsqueeze(0),
                                 bidirectional=False, point_reduction='mean').cpu().item()
    fp_cd = fp_acc_cd + fp_com_cd
    return fp_acc_cd, fp_com_cd, fp_cd


def get_match_ids(v_recon_points, v_gt_points):
    from scipy.optimize import linear_sum_assignment

    cost = np.zeros([len(v_recon_points), len(v_gt_points)])  # recon to gt
    for i in range(cost.shape[0]):
        for j in range(cost.shape[1]):
            _, _, cost[i][j] = get_chamfer(
                v_recon_points[i][..., :3][None, ..., :3],
                v_gt_points[j][..., :3][None, ..., :3]
            )

    recon_indices, recon_to_gt = linear_sum_assignment(cost)

    result_recon2gt = -1 * np.ones(len(v_recon_points), dtype=np.int32)
    result_gt2recon = -1 * np.ones(len(v_gt_points), dtype=np.int32)

    result_recon2gt[recon_indices] = recon_to_gt
    result_gt2recon[recon_to_gt] = recon_indices
    return result_recon2gt, result_gt2recon, cost


def get_detection(id_recon_gt, id_gt_recon, cost_matrix, v_threshold=0.1):
    true_positive = 0
    for i in range(len(id_recon_gt)):
        if id_recon_gt[i] != -1 and cost_matrix[i, id_recon_gt[i]] < v_threshold:
            true_positive += 1
    precision = true_positive / (len(id_recon_gt) + 1e-6)
    recall = true_positive / (len(id_gt_recon) + 1e-6)
    return 2 * precision * recall / (precision + recall + 1e-6), precision, recall


def get_topology(faces, edges, vertices):
    recon_face_edge, recon_edge_vertex = {}, {}
    for i_face, face in enumerate(faces):
        face_edge = []
        for edge in get_primitives(face, TopAbs_EDGE):
            face_edge.append(edges.index(edge) if edge in edges else edges.index(edge.Reversed()))
        recon_face_edge[i_face] = list(set(face_edge))

    for i_edge, edge in enumerate(edges):
        edge_vertex = []
        for vertex in get_primitives(edge, TopAbs_VERTEX):
            edge_vertex.append(vertices.index(vertex) if vertex in vertices else vertices.index(vertex.Reversed()))
        recon_edge_vertex[i_edge] = list(set(edge_vertex))
    return recon_face_edge, recon_edge_vertex


def get_topo_detection(recon_face_edge, gt_face_edge, id_recon_gt_face, id_recon_gt_edge):
    positive = 0
    for i_recon_face, edges in recon_face_edge.items():
        i_gt_face = id_recon_gt_face[i_recon_face]
        if i_gt_face == -1:
            continue
        for i_edge in edges:
            if id_recon_gt_edge[i_edge] in gt_face_edge[i_gt_face]:
                positive += 1
    precision = positive / (sum([len(edges) for edges in recon_face_edge.values()]) + 1e-6)
    recall = positive / (sum([len(edges) for edges in gt_face_edge.values()]) + 1e-6)
    return 2 * precision * recall / (precision + recall + 1e-6), precision, recall

def eval_one_with_try(eval_root, gt_root, folder_name, is_point2cad=False, v_num_per_m=100):
    try:
        eval_one(eval_root, gt_root, folder_name, is_point2cad, v_num_per_m)
    except:
        pass

def eval_one(eval_root, gt_root, folder_name, is_point2cad=False, v_num_per_m=100):
    if os.path.exists(eval_root / folder_name / 'error.txt'):
        os.remove(eval_root / folder_name / 'error.txt')
    if os.path.exists(eval_root / folder_name / 'eval.npz'):
        os.remove(eval_root / folder_name / 'eval.npz')

    # At least have fall_back_mesh
    step_name = "recon_brep.step"

    if is_point2cad:
        if not (eval_root / folder_name / "clipped/mesh_transformed.ply").exists():
            print(f"Error: {folder_name} does not have mesh_transformed")
            return
        mesh = trimesh.load(eval_root / folder_name / "clipped/mesh_transformed.ply")
        color = np.stack((
            [item[1] for item in mesh.metadata['_ply_raw']['face']['data']],
            [item[2] for item in mesh.metadata['_ply_raw']['face']['data']],
            [item[3] for item in mesh.metadata['_ply_raw']['face']['data']],
        ), axis=1)
        color_map = [list(map(lambda item:int(item),item.strip().split(" "))) for item in open("src/brepnet/eval/point2cad_color.txt").readlines()]
        index = np.asarray([color_map.index(item.tolist()) for item in color])
        recon_face_points = [None]*(index.max()+1)
        for i in range(index.max() + 1):
            item_faces = mesh.faces[index == i]
            item_mesh = trimesh.Trimesh(vertices=mesh.vertices, faces=item_faces)
            num_samples = min(max(int(item_mesh.area * v_num_per_m * v_num_per_m), 5), 10000)
            pc_item, id_face = trimesh.sample.sample_surface(item_mesh, num_samples)
            normals = item_mesh.face_normals[id_face]
            recon_face_points[i] = np.concatenate((pc_item, normals), axis=1)

        if not (eval_root / folder_name / "clipped/curve_points.xyzc").exists():
            print(f"Error: {folder_name} does not have curve_points")
            return
        curve_points = np.asarray([list(map(lambda item: float(item),item.strip().split(" "))) for item in open(eval_root / folder_name / "clipped/curve_points.xyzc").readlines()])
        num_curves = int(curve_points.max(axis=0)[3]) + 1
        recon_edge_points = [None]*num_curves
        for i in range(num_curves):
            item_points = curve_points[curve_points[:,3] == i][:,:3]
            recon_edge_points[i] = item_points

        if (eval_root / folder_name / "clipped/remove_duplicates_corners.ply").exists():
            pc = trimesh.load(eval_root / folder_name / "clipped/remove_duplicates_corners.ply")
            recon_vertex_points = pc.vertices[:,None]
        else:
            recon_vertex_points = np.asarray((0,0,0), dtype=np.float32)[None,None]

        recon_face_edge = {}
        recon_edge_vertex = {}
        EV_mode = False
        for items in open(eval_root / folder_name / 'topo/topo_fix.txt', 'r').readlines():
            items = items.strip().split(" ")
            if items[0] == "EV":
                EV_mode = True
                continue
            if len(items) == 1:
                continue
            if not EV_mode:
                recon_face_edge[int(items[0])] = list(map(lambda item: int(item), items[1:]))
            else:
                recon_edge_vertex[int(items[0])] = list(map(lambda item: int(item), items[1:]))
        pass
    else:
        try:
            # Face chamfer distance
            if (eval_root / folder_name / step_name).exists():
                valid, recon_shape = check_step_valid_soild(eval_root / folder_name / step_name, return_shape=True)
            else:
                print(f"Error: {folder_name} does not have {step_name}")
                raise
            if recon_shape is None:
                print(f"Error: {folder_name} 's {step_name} is not valid")
                raise

            # Get data
            recon_faces, recon_face_points, recon_edges, recon_edge_points, recon_vertices, recon_vertex_points = get_data(
                recon_shape, v_num_per_m)

            # Topology
            recon_face_edge, recon_edge_vertex = get_topology(recon_faces, recon_edges, recon_vertices)
        except:
            recon_face_points = [np.zeros((1, 6), dtype=np.float32)]
            recon_edge_points = [np.zeros((1, 6), dtype=np.float32)]
            recon_vertex_points = [np.zeros((1, 3), dtype=np.float32)]
            recon_face_edge = {}
            recon_edge_vertex = {}

    # GT
    _, gt_shape = check_step_valid_soild(gt_root / folder_name / "normalized_shape.step", return_shape=True)
    gt_faces, gt_face_points, gt_edges, gt_edge_points, gt_vertices, gt_vertex_points = get_data(gt_shape, v_num_per_m)
    gt_face_edge, gt_edge_vertex = get_topology(gt_faces, gt_edges, gt_vertices)

    # Chamfer
    face_acc_cd, face_com_cd, face_cd = get_chamfer(recon_face_points, gt_face_points)
    edge_acc_cd, edge_com_cd, edge_cd = get_chamfer(recon_edge_points, gt_edge_points)
    vertex_acc_cd, vertex_com_cd, vertex_cd = get_chamfer(recon_vertex_points, gt_vertex_points)

    # Detection
    id_recon_gt_face, id_gt_recon_face, cost_face = get_match_ids(recon_face_points, gt_face_points)
    id_recon_gt_edge, id_gt_recon_edge, cost_edge = get_match_ids(recon_edge_points, gt_edge_points)
    id_recon_gt_vertex, id_gt_recon_vertex, cost_vertices = get_match_ids(recon_vertex_points, gt_vertex_points)

    face_fscore, face_pre, face_rec = get_detection(id_recon_gt_face, id_gt_recon_face, cost_face)
    edge_fscore, edge_pre, edge_rec = get_detection(id_recon_gt_edge, id_gt_recon_edge, cost_edge)
    vertex_fscore, vertex_pre, vertex_rec = get_detection(id_recon_gt_vertex, id_gt_recon_vertex, cost_vertices)

    fe_fscore, fe_pre, fe_rec = get_topo_detection(recon_face_edge, gt_face_edge, id_recon_gt_face, id_recon_gt_edge)
    ev_fscore, ev_pre, ev_rec = get_topo_detection(recon_edge_vertex, gt_edge_vertex, id_recon_gt_edge,
                                                   id_recon_gt_vertex)

    results = {
        "face_cd": face_cd,
        "edge_cd": edge_cd,
        "vertex_cd": vertex_cd,

        "face_fscore": face_fscore,
        "edge_fscore": edge_fscore,
        "vertex_fscore": vertex_fscore,
        "fe_fscore": fe_fscore,
        "ev_fscore": ev_fscore,

        "face_acc_cd": face_acc_cd,
        "edge_acc_cd": edge_acc_cd,
        "vertex_acc_cd": vertex_acc_cd,

        "face_com_cd": face_com_cd,
        "edge_com_cd": edge_com_cd,
        "vertex_com_cd": vertex_com_cd,

        "fe_pre": fe_pre,
        "ev_pre": ev_pre,
        "fe_rec": fe_rec,
        "ev_rec": ev_rec,

        "vertex_pre": vertex_pre,
        "edge_pre": edge_pre,
        "face_pre": face_pre,

        "vertex_rec": vertex_rec,
        "edge_rec": edge_rec,
        "face_rec": face_rec,

        "num_recon_face": len(recon_face_points),
        "num_gt_face": len(gt_face_points),
        "num_recon_edge": len(recon_edge_points),
        "num_gt_edge": len(gt_edge_points),
        "num_recon_vertex": len(recon_vertex_points),
        "num_gt_vertex": len(gt_vertex_points),
    }
    np.savez_compressed(eval_root / folder_name / 'eval.npz', results=results, allow_pickle=True)


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Evaluate The Generated Brep')
    parser.add_argument('--eval_root', type=str, required=True)
    parser.add_argument('--gt_root', type=str, required=True)
    parser.add_argument('--use_ray', action='store_true')
    parser.add_argument('--num_cpus', type=int, default=16)
    parser.add_argument('--prefix', type=str, default='')
    parser.add_argument('--list', type=str, default='')
    parser.add_argument('--from_scratch', action='store_true')
    parser.add_argument('--is_point2cad', action='store_true')
    parser.add_argument('--only_valid', action='store_true')
    args = parser.parse_args()
    eval_root = Path(args.eval_root)
    gt_root = Path(args.gt_root)
    is_use_ray = args.use_ray
    num_cpus = args.num_cpus
    listfile = args.list
    from_scratch = args.from_scratch
    is_point2cad = args.is_point2cad
    only_valid = args.only_valid

    if not os.path.exists(eval_root):
        raise ValueError(f"Data root path {eval_root} does not exist.")
    if not os.path.exists(gt_root):
        raise ValueError(f"Output root path {gt_root} does not exist.")

    if args.prefix != '':
        eval_one(eval_root, gt_root, args.prefix, is_point2cad)
        exit()

    all_folders = [folder for folder in os.listdir(eval_root) if os.path.isdir(eval_root / folder)]
    ori_length = len(all_folders)
    if listfile != '':
        valid_names = [item.strip() for item in open(listfile, 'r').readlines()]
        all_folders = list(set(all_folders) & set(valid_names))
        all_folders.sort()
    print(f"Total {len(all_folders)}/{ori_length} folders to evaluate")

    if not from_scratch:
        print("Filtering the folders that have eval.npz")
        all_folders = [folder for folder in all_folders if not os.path.exists(eval_root / folder / 'eval.npz')]
        print(f"Total {len(all_folders)} folders to compute after caching")

    if not is_use_ray:
        # random.shuffle(self.folder_names)
        for i in tqdm(range(len(all_folders))):
            eval_one(eval_root, gt_root, all_folders[i], is_point2cad)
    else:
        ray.init(
            dashboard_host="0.0.0.0",
            dashboard_port=8080,
            num_cpus=num_cpus,
            # local_mode=True
        )
        eval_one_remote = ray.remote(max_retries=0)(eval_one_with_try)
        tasks = []
        timeout_cancel_list = []
        for i in range(len(all_folders)):
            tasks.append(eval_one_remote.remote(eval_root, gt_root, all_folders[i], is_point2cad))
        results = []
        for i in tqdm(range(len(all_folders))):
            try:
                results.append(ray.get(tasks[i], timeout=60 * 3))
            except ray.exceptions.GetTimeoutError:
                results.append(None)
                timeout_cancel_list.append(all_folders[i])
                ray.cancel(tasks[i])
            except:
                results.append(None)
        results = [item for item in results if item is not None]
        print(f"Cancel for timeout: {timeout_cancel_list}")

    print("Computing statistics...")
    compute_statistics(eval_root, only_valid, listfile)
    print("Done")