File size: 6,329 Bytes
7b127f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.

import random
import numpy as np
import ray
import torch
import os
from tqdm import tqdm
from load_data.interface import LoadData


def read_all_data(folder_list, load_data, add_model_str=True, add_ori_name=False):
    all_data = []

    for f in folder_list:
        if add_model_str:
            result = load_data.run(os.path.join(f, 'model', 'mesh'))
        elif add_ori_name:
            result = load_data.run(os.path.join(f, f.split('/')[-1], 'mesh'))
        else:
            result = load_data.run(os.path.join(f, 'mesh'))

        all_data.append(result)
    q8_table = all_data[0][0]
    align_10 = all_data[0][1]
    dest_ArtCoeff = [r[2][np.newaxis, :] for r in all_data]
    dest_FdCoeff_q8 = [r[3][np.newaxis, :] for r in all_data]
    dest_CirCoeff_q8 = [r[4][np.newaxis, :] for r in all_data]
    dest_EccCoeff_q8 = [r[5][np.newaxis, :] for r in all_data]
    SRC_ANGLE = 10
    ANGLE = 10
    CAMNUM = 10
    ART_COEF = 35
    FD_COEF = 10
    n_shape = len(all_data)
    dest_ArtCoeff = torch.from_numpy(np.ascontiguousarray(np.concatenate(dest_ArtCoeff, axis=0))).int().cuda().reshape(n_shape, SRC_ANGLE, CAMNUM, ART_COEF)
    dest_FdCoeff_q8 = torch.from_numpy(np.ascontiguousarray(np.concatenate(dest_FdCoeff_q8, axis=0))).int().cuda().reshape(n_shape, ANGLE, CAMNUM, FD_COEF)
    dest_CirCoeff_q8 = torch.from_numpy(np.ascontiguousarray(np.concatenate(dest_CirCoeff_q8, axis=0))).int().cuda().reshape(n_shape, ANGLE, CAMNUM)
    dest_EccCoeff_q8 = torch.from_numpy(np.ascontiguousarray(np.concatenate(dest_EccCoeff_q8, axis=0))).int().cuda().reshape(n_shape, ANGLE, CAMNUM)
    q8_table = torch.from_numpy(np.ascontiguousarray(q8_table)).int().cuda().reshape(256, 256)
    align_10 = torch.from_numpy(np.ascontiguousarray(align_10)).int().cuda().reshape(60, 20)  ##
    return q8_table.contiguous(), align_10.contiguous(), dest_ArtCoeff.contiguous(), \
           dest_FdCoeff_q8.contiguous(), dest_CirCoeff_q8.contiguous(), dest_EccCoeff_q8.contiguous()

def compute_lfd_all(src_folder_list, tgt_folder_list, log):
    load_data = LoadData()

    add_ori_name = False
    add_model_str = False
    src_folder_list.sort()
    tgt_folder_list.sort()

    q8_table, align_10, src_ArtCoeff, src_FdCoeff_q8, src_CirCoeff_q8, src_EccCoeff_q8 = read_all_data(src_folder_list, load_data, add_model_str=False)
    q8_table, align_10, tgt_ArtCoeff, tgt_FdCoeff_q8, tgt_CirCoeff_q8, tgt_EccCoeff_q8 = read_all_data(tgt_folder_list, load_data, add_model_str=add_model_str, add_ori_name=add_ori_name)  ###

    from lfd_all_compute.lfd import LFD
    lfd = LFD()
    lfd_matrix = lfd.forward(
        q8_table, align_10, src_ArtCoeff, src_FdCoeff_q8, src_CirCoeff_q8, src_EccCoeff_q8,
        tgt_ArtCoeff, tgt_FdCoeff_q8, tgt_CirCoeff_q8, tgt_EccCoeff_q8, log)
    # print(lfd_matrix)
    # print(lfd_matrix.shape)
    mmd = lfd_matrix.float().min(dim=0)[0].mean()
    mmd_swp = lfd_matrix.float().min(dim=1)[0].mean()
    # print(mmd)
    # print(mmd_swp)
    return lfd_matrix.data.cpu().numpy()



if __name__ == '__main__':
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument("--save_name", type=str, required=True, help="path to the save resules shapenet dataset")
    parser.add_argument("--dataset_path", type=str, required=True, help="path to the preprocessed shapenet dataset")
    parser.add_argument("--gen_path", type=str, required=True, help="path to the generated models")
    parser.add_argument("--num_workers", type=int, default=1, help="number of workers to run in parallel")
    parser.add_argument("--list", type=str, default=None, help="list file in the training set")
    args = parser.parse_args()
    save_path = '/'.join(args.save_name.split('/')[:-1])
    os.makedirs(save_path, exist_ok=True)
    num_workers = args.num_workers
    listfile = args.list
    ray.init(
        num_cpus=os.cpu_count(),
        num_gpus=num_workers,
    )
    print(f"dataset_path: {args.dataset_path}")
    print(f"gen_path: {args.gen_path}")
    assert os.path.exists(args.dataset_path) and os.path.exists(args.gen_path)

    tgt_folder_list = sorted(os.listdir(args.dataset_path))
    if listfile is not None:
        valid_folders = [item.strip() for item in open(listfile, 'r').readlines()]
        tgt_folder_list = sorted(list(set(valid_folders) & set(tgt_folder_list)))
        tgt_folder_list = [os.path.join(args.dataset_path, f) for f in tgt_folder_list]
    else:
        tgt_folder_list = [os.path.join(args.dataset_path, f) for f in tgt_folder_list]

    src_folder_list = os.listdir(args.gen_path)
    random.shuffle(src_folder_list)
    src_folder_list = sorted(src_folder_list[:3000])
    src_folder_list = [os.path.join(args.gen_path, f) for f in src_folder_list]

    compute_lfd_all_remote = ray.remote(num_gpus=1, num_cpus=os.cpu_count() // num_workers)(compute_lfd_all)

    print("Check data")
    print(f"len of src_folder_list: {len(src_folder_list)}")
    print(f"len of tgt_folder_list: {len(tgt_folder_list)}")
    # print(src_folder_list[0])
    # print(tgt_folder_list[0])

    results = []
    for i in range(num_workers):
        i_start = i * len(src_folder_list) // num_workers
        i_end = (i + 1) * len(src_folder_list) // num_workers
        # print(i, i_start, i_end)
        results.append(compute_lfd_all_remote.remote(
            src_folder_list[i_start:i_end],
            tgt_folder_list,
            i==0))

    lfd_matrix = ray.get(results)
    lfd_matrix = np.concatenate(lfd_matrix, axis=0)
    import pickle
    save_name = args.save_name
    nearest_name = [tgt_folder_list[idx].split("/")[-1] for idx in lfd_matrix.argmin(axis=1)]
    src_folder_list = [src_folder_list[idx].split("/")[-1] for idx in range(len(src_folder_list))]
    pickle.dump([src_folder_list, nearest_name, lfd_matrix], open(save_name, 'wb'))
    print(f"pkl is saved to {save_name}")