File size: 6,530 Bytes
7b127f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from typing import List, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
from pointnet2_ops import pointnet2_utils


def build_shared_mlp(mlp_spec: List[int], bn: bool = True):
    layers = []
    for i in range(1, len(mlp_spec)):
        layers.append(
            nn.Conv2d(mlp_spec[i - 1], mlp_spec[i], kernel_size=1, bias=not bn)
        )
        if bn:
            layers.append(nn.BatchNorm2d(mlp_spec[i]))
        layers.append(nn.ReLU(True))

    return nn.Sequential(*layers)


class _PointnetSAModuleBase(nn.Module):
    def __init__(self):
        super(_PointnetSAModuleBase, self).__init__()
        self.npoint = None
        self.groupers = None
        self.mlps = None

    def forward(
        self, xyz: torch.Tensor, features: Optional[torch.Tensor]
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        r"""
        Parameters
        ----------
        xyz : torch.Tensor
            (B, N, 3) tensor of the xyz coordinates of the features
        features : torch.Tensor
            (B, C, N) tensor of the descriptors of the the features

        Returns
        -------
        new_xyz : torch.Tensor
            (B, npoint, 3) tensor of the new features' xyz
        new_features : torch.Tensor
            (B,  \sum_k(mlps[k][-1]), npoint) tensor of the new_features descriptors
        """

        new_features_list = []

        xyz_flipped = xyz.transpose(1, 2).contiguous()
        new_xyz = (
            pointnet2_utils.gather_operation(
                xyz_flipped, pointnet2_utils.furthest_point_sample(xyz, self.npoint)
            )
            .transpose(1, 2)
            .contiguous()
            if self.npoint is not None
            else None
        )

        for i in range(len(self.groupers)):
            new_features = self.groupers[i](
                xyz, new_xyz, features
            )  # (B, C, npoint, nsample)

            new_features = self.mlps[i](new_features)  # (B, mlp[-1], npoint, nsample)
            new_features = F.max_pool2d(
                new_features, kernel_size=[1, new_features.size(3)]
            )  # (B, mlp[-1], npoint, 1)
            new_features = new_features.squeeze(-1)  # (B, mlp[-1], npoint)

            new_features_list.append(new_features)

        return new_xyz, torch.cat(new_features_list, dim=1)


class PointnetSAModuleMSG(_PointnetSAModuleBase):
    r"""Pointnet set abstrction layer with multiscale grouping

    Parameters
    ----------
    npoint : int
        Number of features
    radii : list of float32
        list of radii to group with
    nsamples : list of int32
        Number of samples in each ball query
    mlps : list of list of int32
        Spec of the pointnet before the global max_pool for each scale
    bn : bool
        Use batchnorm
    """

    def __init__(self, npoint, radii, nsamples, mlps, bn=True, use_xyz=True):
        # type: (PointnetSAModuleMSG, int, List[float], List[int], List[List[int]], bool, bool) -> None
        super(PointnetSAModuleMSG, self).__init__()

        assert len(radii) == len(nsamples) == len(mlps)

        self.npoint = npoint
        self.groupers = nn.ModuleList()
        self.mlps = nn.ModuleList()
        for i in range(len(radii)):
            radius = radii[i]
            nsample = nsamples[i]
            self.groupers.append(
                pointnet2_utils.QueryAndGroup(radius, nsample, use_xyz=use_xyz)
                if npoint is not None
                else pointnet2_utils.GroupAll(use_xyz)
            )
            mlp_spec = mlps[i]
            if use_xyz:
                mlp_spec[0] += 3

            self.mlps.append(build_shared_mlp(mlp_spec, bn))


class PointnetSAModule(PointnetSAModuleMSG):
    r"""Pointnet set abstrction layer

    Parameters
    ----------
    npoint : int
        Number of features
    radius : float
        Radius of ball
    nsample : int
        Number of samples in the ball query
    mlp : list
        Spec of the pointnet before the global max_pool
    bn : bool
        Use batchnorm
    """

    def __init__(
        self, mlp, npoint=None, radius=None, nsample=None, bn=True, use_xyz=True
    ):
        # type: (PointnetSAModule, List[int], int, float, int, bool, bool) -> None
        super(PointnetSAModule, self).__init__(
            mlps=[mlp],
            npoint=npoint,
            radii=[radius],
            nsamples=[nsample],
            bn=bn,
            use_xyz=use_xyz,
        )


class PointnetFPModule(nn.Module):
    r"""Propigates the features of one set to another

    Parameters
    ----------
    mlp : list
        Pointnet module parameters
    bn : bool
        Use batchnorm
    """

    def __init__(self, mlp, bn=True):
        # type: (PointnetFPModule, List[int], bool) -> None
        super(PointnetFPModule, self).__init__()
        self.mlp = build_shared_mlp(mlp, bn=bn)

    def forward(self, unknown, known, unknow_feats, known_feats):
        # type: (PointnetFPModule, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor) -> torch.Tensor
        r"""
        Parameters
        ----------
        unknown : torch.Tensor
            (B, n, 3) tensor of the xyz positions of the unknown features
        known : torch.Tensor
            (B, m, 3) tensor of the xyz positions of the known features
        unknow_feats : torch.Tensor
            (B, C1, n) tensor of the features to be propigated to
        known_feats : torch.Tensor
            (B, C2, m) tensor of features to be propigated

        Returns
        -------
        new_features : torch.Tensor
            (B, mlp[-1], n) tensor of the features of the unknown features
        """

        if known is not None:
            dist, idx = pointnet2_utils.three_nn(unknown, known)
            dist_recip = 1.0 / (dist + 1e-8)
            norm = torch.sum(dist_recip, dim=2, keepdim=True)
            weight = dist_recip / norm

            interpolated_feats = pointnet2_utils.three_interpolate(
                known_feats, idx, weight
            )
        else:
            interpolated_feats = known_feats.expand(
                *(known_feats.size()[0:2] + [unknown.size(1)])
            )

        if unknow_feats is not None:
            new_features = torch.cat(
                [interpolated_feats, unknow_feats], dim=1
            )  # (B, C2 + C1, n)
        else:
            new_features = interpolated_feats

        new_features = new_features.unsqueeze(-1)
        new_features = self.mlp(new_features)

        return new_features.squeeze(-1)