File size: 9,735 Bytes
7b127f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import os
from pathlib import Path
import random

from tqdm import tqdm
import argparse
import numpy as np
import shutil
import ray
import glob

from eval.check_valid import check_step_valid_soild
from diffusion.utils import *
from OCC.Core.BRepLProp import BRepLProp_SLProps
from OCC.Core.BRepGProp import brepgprop
from OCC.Core.TopAbs import TopAbs_SOLID
import trimesh

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"


def random_rgba():
    return tuple(np.random.randint(100, 256, 3).tolist() + [255])


def idx_to_rgba(idx):
    r = idx // 100
    g = (idx // 10) % 10
    b = idx % 10
    return (r + 100, g + 100, b + 100, 255)


def rgb_to_idx(rgb):
    r, g, b = rgb
    return (r - 100) * 100 + (g - 100) * 10 + (b - 100)


def normalize_mesh(mesh):
    bounds = mesh.bounds
    scale = 2.0 / (bounds[1] - bounds[0]).max()
    mesh.apply_scale(scale)
    mesh.apply_translation(-mesh.centroid)
    return mesh


def arrange_meshes(files, out_path, intervals=0.5, color_mode="index", is_normalized=False):
    assert color_mode in ["random", "index"]
    if type(files[0]) == str:
        if is_normalized:
            meshes = [normalize_mesh(trimesh.load(file)) for file in files]
        else:
            meshes = [trimesh.load(file) for file in files]
    elif type(files[0]) == trimesh.Trimesh:
        if is_normalized:
            meshes = [normalize_mesh(mesh) for mesh in files]
        else:
            meshes = [mesh for mesh in files]
    else:
        raise ValueError("Invalid input type")
    num_meshes = len(meshes)

    grid_size = int(np.ceil(np.sqrt(num_meshes)))
    combined = []
    for idx, mesh in enumerate(meshes):
        row = idx // grid_size
        col = idx % grid_size
        translation = [col * (2 + intervals), -row * (2 + intervals), 0]
        if color_mode == "index":
            mesh.visual.face_colors = np.array([idx_to_rgba(idx)] * len(mesh.faces))
        elif color_mode == "random":
            mesh.visual.face_colors = np.array([random_rgba()] * len(mesh.faces))
        else:
            raise ValueError("Invalid color mode")
        mesh.apply_translation(translation)
        combined.append(mesh)

    combined_mesh = trimesh.util.concatenate(combined)
    combined_mesh.export(out_path)


def arrange_meshes_row(file_paths, out_path, intervals=0.5, color_mode="random"):
    assert color_mode in ["random", "index"]
    meshes = [normalize_mesh(trimesh.load(file)) for file in file_paths]
    num_meshes = len(meshes)

    combined = []
    for idx, mesh in enumerate(meshes):
        translation = [idx * (2 + intervals), 0, 0]
        if color_mode == "index":
            mesh.visual.face_colors = np.array([idx_to_rgba(idx)] * len(mesh.faces))
        elif color_mode == "random":
            mesh.visual.face_colors = np.array([random_rgba()] * len(mesh.faces))
        else:
            raise ValueError("Invalid color mode")
        mesh.apply_translation(translation)
        combined.append(mesh)

    combined_mesh = trimesh.util.concatenate(combined)
    combined_mesh.export(out_path)


def explore_primitive(shape, primitive):
    primitive_list = []
    explorer = TopExp_Explorer(shape, primitive)
    while explorer.More():
        primitive_list.append(explorer.Current())
        explorer.Next()

    return primitive_list


def compute_solid_complexity(file_path, num_samples=4):
    try:
        shape = read_step_file(file_path, as_compound=False, verbosity=False)
    except:
        return {"is_valid_solid": False, "mean_curvature": -1, "num_faces": -1, "num_edges": -1, "num_vertices": -1}

    is_valid = check_step_valid_soild(file_path)

    sample_point_curvature = []

    face_list = explore_primitive(shape, TopAbs_FACE)
    edge_list = explore_primitive(shape, TopAbs_EDGE)
    vetex_list = explore_primitive(shape, TopAbs_VERTEX)

    for face in face_list:
        surf_adaptor = BRepAdaptor_Surface(face)
        u_min, u_max, v_min, v_max = (surf_adaptor.FirstUParameter(), surf_adaptor.LastUParameter(), surf_adaptor.FirstVParameter(),
                                      surf_adaptor.LastVParameter())

        u_samples = np.linspace(u_min, u_max, int(np.sqrt(num_samples)))
        v_samples = np.linspace(v_min, v_max, int(np.sqrt(num_samples)))

        for u in u_samples:
            for v in v_samples:
                props = BRepLProp_SLProps(surf_adaptor, u, v, 2, 1e-6)
                if props.IsCurvatureDefined():
                    mean_curvature = props.MeanCurvature()
                    sample_point_curvature.append(abs(mean_curvature))

    if len(sample_point_curvature) > 0:
        mean_curvature = np.mean(sample_point_curvature)
    else:
        mean_curvature = 0.0

    if mean_curvature < 1e-4:
        mean_curvature = 0.0

    volume_props = GProp_GProps()
    surface_props = GProp_GProps()
    brepgprop.VolumeProperties(shape, volume_props)
    brepgprop.SurfaceProperties(shape, surface_props)

    complexity = len(face_list) + surface_props.Mass() / volume_props.Mass() + mean_curvature

    return {"is_valid_solid": is_valid, "mean_curvature": mean_curvature,
            "num_faces"     : len(face_list), "num_edges": len(edge_list), "num_vertices": len(vetex_list),
            "complexity"    : complexity}


compute_solid_complexity_remote = ray.remote(compute_solid_complexity)

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--data_root", type=str, required=True)
    parser.add_argument("--out_root", type=str, required=False)
    parser.add_argument("--src_root", type=str, required=False)
    parser.add_argument("--random", action='store_true')
    parser.add_argument("--sort", action='store_true')
    parser.add_argument("--sample_num", type=int, default=100)
    parser.add_argument("--use_ray", action='store_true')
    parser.add_argument("--valid", action='store_true')
    parser.add_argument("--index", action='store_true')
    args = parser.parse_args()
    data_root = args.data_root
    out_root = args.out_root
    src_root = None if not args.src_root else Path(args.src_root)
    random = args.random
    sort = args.sort
    sample_num = args.sample_num
    use_ray = args.use_ray
    onlyvalid = args.valid

    if not out_root:
        out_root = data_root + "_choose"

    # can only choose one of random, sort, seg
    if sum([random, sort]) != 1:
        raise ValueError("Only and must set one of random, sort")

    if os.path.exists(out_root):
        shutil.rmtree(out_root)
    os.makedirs(out_root)
    folder_names = [f for f in os.listdir(data_root) if os.path.isdir(os.path.join(data_root, f))]
    # folder_names = folder_names[:10]
    if random:
        sample_folder = random.sample(folder_names, sample_num)
        for folder in tqdm(sample_folder):
            shutil.copytree(str(os.path.join(data_root, folder)), str(os.path.join(out_root, folder)))
        exit(0)

    # accumulate the data(mean_curvature, num_faces, num_edges, num_vertices) of each sample
    folder_names.sort()
    folder_scores = {}
    if not use_ray:
        pbar = tqdm(folder_names)
        for folder in pbar:
            pbar.set_description(f"Processing {folder}")
            file_path = glob.glob(os.path.join(data_root, folder, "*.step"))
            file_path.sort()
            if len(file_path) == 0:
                continue
            file_path = file_path[0]
            score = compute_solid_complexity(file_path)
            folder_scores[folder] = score
    else:
        ray.init(
                local_mode=False,
        )
        futures = []
        futures_folder_names = []
        for folder in tqdm(folder_names):
            file_path = glob.glob(os.path.join(data_root, folder, "*.step"))
            if len(file_path) == 0:
                continue
            file_path = file_path[0]
            futures.append(compute_solid_complexity_remote.remote(file_path))
            futures_folder_names.append(folder)

        for idx in tqdm(range(len(futures))):
            folder_name = futures_folder_names[idx]
            result = ray.get(futures[idx])
            folder_scores[folder_name] = result

    if onlyvalid:
        valid_folder_scores = {}
        for folder, score in folder_scores.items():
            if score['is_valid_solid']:
                valid_folder_scores[folder] = score
        folder_scores = valid_folder_scores

    if sort:
        # sort the folders based on the mean_curvature, num_faces, num_edges, num_vertices
        sorted_folders = sorted(folder_scores.items(),
                                key=lambda x: (x[1]["num_faces"], x[1]["mean_curvature"],),
                                reverse=True)

        for idx, folder in enumerate(tqdm(sorted_folders)):
            shutil.copytree(str(os.path.join(data_root, folder[0])), str(os.path.join(out_root, f"{idx:05d}_{folder[0]}")))
            if src_root is not None:
                for file in (src_root/folder[0]).glob("*"):
                    if "_pc.ply" in file.name or "_txt.txt" in file.name or ".png" in file.name:
                        shutil.copy(str(file), str(os.path.join(out_root, f"{idx:05d}_{folder[0]}")))
        ray.shutdown()
        mesh_path_list = glob.glob(os.path.join(out_root, "**", "*.stl"), recursive=True)
        mesh_path_list.sort()
        prefix = Path(data_root).name
        name = os.path.join(out_root, "{}.ply".format(prefix))
        if args.index:
            arrange_meshes(mesh_path_list, name, color_mode="index")
        else:
            arrange_meshes(mesh_path_list, name, color_mode="random")
        print(f"arranged mesh is saved to {name}")

    print("Done")