CUDA_VISIBLE_DEVICES=0 python -m diffusion.train_diffusion \ trainer.evaluate=true \ trainer.batch_size=1000 \ trainer.gpu=1 \ trainer.test_output_dir=./outputs/unconditional/ \ trainer.resume_from_checkpoint=./ckpt/Diffusion_uncond_1100k.ckpt \ trainer.num_worker=2 \ trainer.accelerator="32-true" \ trainer.exp_name=test \ dataset.name=Dummy_dataset \ dataset.length=5000 \ dataset.num_max_faces=30 \ dataset.condition=None \ model.name=Diffusion_condition \ model.autoencoder_weights=./ckpt/AE_deepcad_1100k.ckpt \ model.autoencoder=AutoEncoder_1119_light \ model.with_intersection=true \ model.in_channels=6 \ model.dim_shape=768 \ model.dim_latent=8 \ model.gaussian_weights=1e-6 \ model.pad_method=random \ model.diffusion_latent=768 \ model.diffusion_type=epsilon \ model.gaussian_weights=1e-6 \ model.condition=None \ model.num_max_faces=30 \ model.beta_schedule=linear \ model.addition_tag=false \ model.name=Diffusion_condition python -m construct_brep \ --data_root ./outputs/unconditional \ --out_root ./outputs/unconditional_post \ --use_ray \ --num_cpus 24 \ --drop_num 3 \ --from_scratch