SpatialTrackerV2 / inference.py
xiaoyuxi
support HubMixin
9193cab
raw
history blame
8.16 kB
import pycolmap
from models.SpaTrackV2.models.predictor import Predictor
import yaml
import easydict
import os
import numpy as np
import cv2
import torch
import torchvision.transforms as T
from PIL import Image
import io
import moviepy.editor as mp
from models.SpaTrackV2.utils.visualizer import Visualizer
import tqdm
from models.SpaTrackV2.models.utils import get_points_on_a_grid
import glob
from rich import print
import argparse
import decord
from models.SpaTrackV2.models.vggt4track.models.vggt_moe import VGGT4Track
from models.SpaTrackV2.models.vggt4track.utils.load_fn import preprocess_image
from models.SpaTrackV2.models.vggt4track.utils.pose_enc import pose_encoding_to_extri_intri
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--track_mode", type=str, default="offline")
parser.add_argument("--data_type", type=str, default="RGBD")
parser.add_argument("--data_dir", type=str, default="assets/example0")
parser.add_argument("--video_name", type=str, default="snowboard")
parser.add_argument("--grid_size", type=int, default=10)
parser.add_argument("--vo_points", type=int, default=756)
parser.add_argument("--fps", type=int, default=1)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
out_dir = args.data_dir + "/results"
# fps
fps = int(args.fps)
mask_dir = args.data_dir + f"/{args.video_name}.png"
vggt4track_model = VGGT4Track.from_pretrained("Yuxihenry/SpatialTrackerV2_Front")
vggt4track_model.eval()
vggt4track_model = vggt4track_model.to("cuda")
if args.data_type == "RGBD":
npz_dir = args.data_dir + f"/{args.video_name}.npz"
data_npz_load = dict(np.load(npz_dir, allow_pickle=True))
#TODO: tapip format
video_tensor = data_npz_load["video"] * 255
video_tensor = torch.from_numpy(video_tensor)
video_tensor = video_tensor[::fps]
depth_tensor = data_npz_load["depths"]
depth_tensor = depth_tensor[::fps]
intrs = data_npz_load["intrinsics"]
intrs = intrs[::fps]
extrs = np.linalg.inv(data_npz_load["extrinsics"])
extrs = extrs[::fps]
unc_metric = None
elif args.data_type == "RGB":
vid_dir = os.path.join(args.data_dir, f"{args.video_name}.mp4")
video_reader = decord.VideoReader(vid_dir)
video_tensor = torch.from_numpy(video_reader.get_batch(range(len(video_reader))).asnumpy()).permute(0, 3, 1, 2) # Convert to tensor and permute to (N, C, H, W)
video_tensor = video_tensor[::fps].float()
# process the image tensor
video_tensor = preprocess_image(video_tensor)[None]
with torch.no_grad():
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
# Predict attributes including cameras, depth maps, and point maps.
predictions = vggt4track_model(video_tensor.cuda()/255)
extrinsic, intrinsic = predictions["poses_pred"], predictions["intrs"]
depth_map, depth_conf = predictions["points_map"][..., 2], predictions["unc_metric"]
depth_tensor = depth_map.squeeze().cpu().numpy()
extrs = np.eye(4)[None].repeat(len(depth_tensor), axis=0)
extrs = extrinsic.squeeze().cpu().numpy()
intrs = intrinsic.squeeze().cpu().numpy()
video_tensor = video_tensor.squeeze()
#NOTE: 20% of the depth is not reliable
# threshold = depth_conf.squeeze()[0].view(-1).quantile(0.6).item()
unc_metric = depth_conf.squeeze().cpu().numpy() > 0.5
data_npz_load = {}
if os.path.exists(mask_dir):
mask_files = mask_dir
mask = cv2.imread(mask_files)
mask = cv2.resize(mask, (video_tensor.shape[3], video_tensor.shape[2]))
mask = mask.sum(axis=-1)>0
else:
mask = np.ones_like(video_tensor[0,0].numpy())>0
# get all data pieces
viz = True
os.makedirs(out_dir, exist_ok=True)
# with open(cfg_dir, "r") as f:
# cfg = yaml.load(f, Loader=yaml.FullLoader)
# cfg = easydict.EasyDict(cfg)
# cfg.out_dir = out_dir
# cfg.model.track_num = args.vo_points
# print(f"Downloading model from HuggingFace: {cfg.ckpts}")
if args.track_mode == "offline":
model = Predictor.from_pretrained("Yuxihenry/SpatialTrackerV2-Offline")
else:
model = Predictor.from_pretrained("Yuxihenry/SpatialTrackerV2-Online")
# config the model; the track_num is the number of points in the grid
model.spatrack.track_num = args.vo_points
model.eval()
model.to("cuda")
viser = Visualizer(save_dir=out_dir, grayscale=True,
fps=10, pad_value=0, tracks_leave_trace=5)
grid_size = args.grid_size
# get frame H W
if video_tensor is None:
cap = cv2.VideoCapture(video_path)
frame_H = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_W = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
else:
frame_H, frame_W = video_tensor.shape[2:]
grid_pts = get_points_on_a_grid(grid_size, (frame_H, frame_W), device="cpu")
# Sample mask values at grid points and filter out points where mask=0
if os.path.exists(mask_dir):
grid_pts_int = grid_pts[0].long()
mask_values = mask[grid_pts_int[...,1], grid_pts_int[...,0]]
grid_pts = grid_pts[:, mask_values]
query_xyt = torch.cat([torch.zeros_like(grid_pts[:, :, :1]), grid_pts], dim=2)[0].numpy()
# Run model inference
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
(
c2w_traj, intrs, point_map, conf_depth,
track3d_pred, track2d_pred, vis_pred, conf_pred, video
) = model.forward(video_tensor, depth=depth_tensor,
intrs=intrs, extrs=extrs,
queries=query_xyt,
fps=1, full_point=False, iters_track=4,
query_no_BA=True, fixed_cam=False, stage=1, unc_metric=unc_metric,
support_frame=len(video_tensor)-1, replace_ratio=0.2)
# resize the results to avoid too large I/O Burden
# depth and image, the maximum side is 336
max_size = 336
h, w = video.shape[2:]
scale = min(max_size / h, max_size / w)
if scale < 1:
new_h, new_w = int(h * scale), int(w * scale)
video = T.Resize((new_h, new_w))(video)
video_tensor = T.Resize((new_h, new_w))(video_tensor)
point_map = T.Resize((new_h, new_w))(point_map)
conf_depth = T.Resize((new_h, new_w))(conf_depth)
track2d_pred[...,:2] = track2d_pred[...,:2] * scale
intrs[:,:2,:] = intrs[:,:2,:] * scale
if depth_tensor is not None:
if isinstance(depth_tensor, torch.Tensor):
depth_tensor = T.Resize((new_h, new_w))(depth_tensor)
else:
depth_tensor = T.Resize((new_h, new_w))(torch.from_numpy(depth_tensor))
if viz:
viser.visualize(video=video[None],
tracks=track2d_pred[None][...,:2],
visibility=vis_pred[None],filename="test")
# save as the tapip3d format
data_npz_load["coords"] = (torch.einsum("tij,tnj->tni", c2w_traj[:,:3,:3], track3d_pred[:,:,:3].cpu()) + c2w_traj[:,:3,3][:,None,:]).numpy()
data_npz_load["extrinsics"] = torch.inverse(c2w_traj).cpu().numpy()
data_npz_load["intrinsics"] = intrs.cpu().numpy()
depth_save = point_map[:,2,...]
depth_save[conf_depth<0.5] = 0
data_npz_load["depths"] = depth_save.cpu().numpy()
data_npz_load["video"] = (video_tensor).cpu().numpy()/255
data_npz_load["visibs"] = vis_pred.cpu().numpy()
data_npz_load["unc_metric"] = conf_depth.cpu().numpy()
np.savez(os.path.join(out_dir, f'result.npz'), **data_npz_load)
print(f"Results saved to {out_dir}.\nTo visualize them with tapip3d, run: [bold yellow]python tapip3d_viz.py {out_dir}/result.npz[/bold yellow]")