import openai, gradio as gr, json, plotly.graph_objects as go from pathlib import Path SYSTEM_PROMPT = """You are a multimodal assistant. Return one of the following response types: - Plain text (just a natural reply) - JSON object: {"type":"image","prompt":""} - JSON object: {"type":"chart","title":"","data":[{"x":[...],"y":[...],"label":"..."}]} - JSON object: {"type":"table","headers":["A","B"],"rows":[[1,2],[3,4]]} - JSON object: {"type":"audio","text":"Text to speak"} Respond in plain text unless image/chart/table/audio is clearly required. """ def build_messages(history, user_msg): messages = [{"role": "system", "content": SYSTEM_PROMPT}] for u, a in history: messages.append({"role": "user", "content": u}) messages.append({"role": "assistant", "content": a}) messages.append({"role": "user", "content": user_msg}) return messages def multimodal_chat(api_key, user_msg, history): if not api_key: raise gr.Error("🔑 Please provide your OpenAI API key.") openai.api_key = api_key messages = build_messages(history, user_msg) response = openai.chat.completions.create(model="gpt-4o", messages=messages) content = response.choices[0].message.content.strip() img_url, fig, table_html, audio_url = None, None, None, None try: parsed = json.loads(content) t = parsed.get("type") if t == "image": img = openai.images.generate(model="dall-e-3", prompt=parsed["prompt"], size="1024x1024", n=1) img_url = img.data[0].url history.append([user_msg, f"![generated image]({img_url})"]) elif t == "chart": fig = go.Figure() for s in parsed["data"]: fig.add_trace(go.Scatter(x=s["x"], y=s["y"], mode="lines+markers", name=s.get("label", ""))) fig.update_layout(title=parsed["title"]) history.append([user_msg, parsed["title"]]) elif t == "table": headers = parsed["headers"] rows = parsed["rows"] table_html = f"<table><thead><tr>{''.join(f'<th>{h}</th>' for h in headers)}</tr></thead><tbody>" table_html += ''.join(f"<tr>{''.join(f'<td>{c}</td>' for c in row)}</tr>" for row in rows) table_html += "</tbody></table>" history.append([user_msg, "Table generated below"]) elif t == "audio": audio = openai.audio.speech.create(model="tts-1", voice="alloy", input=parsed["text"]) path = "/tmp/audio.mp3" with open(path, "wb") as f: f.write(audio.read()) audio_url = path history.append([user_msg, parsed["text"]]) else: history.append([user_msg, content]) except Exception: history.append([user_msg, content]) return history, img_url, fig, table_html, audio_url with gr.Blocks(css="style.css") as demo: gr.Markdown("🤖 **Multimodal Assistant** – Text, Images, Charts, Tables, Audio", elem_id="zen-header") api_key = gr.Textbox(label="OpenAI API Key", type="password", placeholder="sk-...") chatbot = gr.Chatbot() with gr.Row(): user_msg = gr.Textbox(label="Your message", scale=4) send_btn = gr.Button("Send", variant="primary") img_out = gr.Image() chart_out = gr.Plot() table_out = gr.HTML() audio_out = gr.Audio(type="filepath") def respond(api_key, user_msg, chat_history): chat_history, img_url, fig, table, audio = multimodal_chat(api_key, user_msg, chat_history) return chat_history, gr.update(value=img_url), gr.update(value=fig), gr.update(value=table), gr.update(value=audio) send_btn.click(respond, [api_key, user_msg, chatbot], [chatbot, img_out, chart_out, table_out, audio_out]) user_msg.submit(respond, [api_key, user_msg, chatbot], [chatbot, img_out, chart_out, table_out, audio_out]) if __name__ == "__main__": demo.queue().launch()