import gradio as gr import torch from transformers import DetrImageProcessor, DetrForObjectDetection from PIL import Image, ImageDraw # Load the pre-trained DETR model and processor processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") def detect_objects(image: Image.Image) -> Image.Image: try: # Preprocess the image inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) # Convert outputs to bounding boxes and labels target_sizes = torch.tensor([image.size[::-1]]) results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] # Draw bounding boxes on the image draw = ImageDraw.Draw(image) for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): box = [round(i, 2) for i in box.tolist()] label_text = f"{model.config.id2label[label.item()]}: {round(score.item(), 3)}" draw.rectangle(box, outline="red", width=3) draw.text((box[0], box[1]), label_text, fill="red") return image except Exception as e: print("Error during detection:", e) return image # In a robust production system, consider returning a message or a default image # Create a Gradio interface iface = gr.Interface( fn=detect_objects, inputs=gr.Image(type="pil", label="Upload an Image"), outputs=gr.Image(label="Detection Result"), title="Robust Object Detection with DETR", description="Upload an image to detect objects using a pre-trained DETR model from Hugging Face Hub." ) if __name__ == "__main__": iface.launch()