Spaces:
Running
on
Zero
Running
on
Zero
Zen0
commited on
Commit
Β·
7d0c82c
1
Parent(s):
bd99e48
Initial deployment of AusCyberBench Evaluation Dashboard
Browse filesπ¦πΊ Australia's First LLM Cybersecurity Benchmark
Features:
- Interactive Gradio dashboard for model evaluation
- 26 pre-configured models (small, medium, security-focused)
- Evaluates on 13,449 tasks across 6 categories
- Real-time progress tracking and leaderboard
- Australian orthography and color scheme
- Downloadable results (JSON format)
Categories:
- Regulatory: Essential Eight, ISM Controls, Privacy Act, SOCI Act
- Knowledge: Threat Intelligence, Terminology
Dataset: Zen0/AusCyberBench
- .gitignore +36 -0
- README.md +182 -12
- app.py +503 -0
- requirements.txt +9 -0
.gitignore
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
*.so
|
| 6 |
+
.Python
|
| 7 |
+
env/
|
| 8 |
+
venv/
|
| 9 |
+
.venv
|
| 10 |
+
|
| 11 |
+
# Model cache
|
| 12 |
+
.cache/
|
| 13 |
+
models/
|
| 14 |
+
*.bin
|
| 15 |
+
*.safetensors
|
| 16 |
+
|
| 17 |
+
# Results and logs
|
| 18 |
+
*.json
|
| 19 |
+
*.log
|
| 20 |
+
*.csv
|
| 21 |
+
|
| 22 |
+
# HuggingFace cache
|
| 23 |
+
.huggingface/
|
| 24 |
+
|
| 25 |
+
# Jupyter
|
| 26 |
+
.ipynb_checkpoints/
|
| 27 |
+
|
| 28 |
+
# OS
|
| 29 |
+
.DS_Store
|
| 30 |
+
Thumbs.db
|
| 31 |
+
|
| 32 |
+
# IDE
|
| 33 |
+
.vscode/
|
| 34 |
+
.idea/
|
| 35 |
+
*.swp
|
| 36 |
+
*.swo
|
README.md
CHANGED
|
@@ -1,12 +1,182 @@
|
|
| 1 |
-
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: AusCyberBench Evaluation Dashboard
|
| 3 |
+
emoji: π¦πΊ
|
| 4 |
+
colorFrom: green
|
| 5 |
+
colorTo: yellow
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.0.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# π¦πΊ AusCyberBench Evaluation Dashboard
|
| 14 |
+
|
| 15 |
+
**Australia's First LLM Cybersecurity Benchmark**
|
| 16 |
+
|
| 17 |
+
An interactive dashboard for evaluating language models on Australian cybersecurity knowledge, regulations, and threat intelligence.
|
| 18 |
+
|
| 19 |
+
## About AusCyberBench
|
| 20 |
+
|
| 21 |
+
AusCyberBench is a comprehensive benchmark dataset containing **13,449 tasks** across six critical categories:
|
| 22 |
+
|
| 23 |
+
### π Categories
|
| 24 |
+
|
| 25 |
+
- **π‘οΈ Regulatory: Essential Eight** (2,558 tasks)
|
| 26 |
+
- ACSC's baseline cybersecurity mitigation strategies
|
| 27 |
+
- Maturity levels 1-3 across 8 mitigation strategies
|
| 28 |
+
- Application whitelisting, patching, MFA, backups, etc.
|
| 29 |
+
|
| 30 |
+
- **π Regulatory: ISM Controls** (7,200 tasks)
|
| 31 |
+
- Information Security Manual control requirements
|
| 32 |
+
- Commonwealth entity security obligations
|
| 33 |
+
- Control effectiveness, implementation, and compliance
|
| 34 |
+
|
| 35 |
+
- **π Regulatory: Privacy Act** (204 tasks)
|
| 36 |
+
- Australian Privacy Principles (APPs)
|
| 37 |
+
- Data protection and privacy obligations
|
| 38 |
+
- Notifiable Data Breaches (NDB) scheme
|
| 39 |
+
|
| 40 |
+
- **β‘ Regulatory: SOCI Act** (240 tasks)
|
| 41 |
+
- Security of Critical Infrastructure Act 2018
|
| 42 |
+
- Critical infrastructure risk management
|
| 43 |
+
- Sector-specific obligations
|
| 44 |
+
|
| 45 |
+
- **π― Knowledge: Threat Intelligence** (2,520 tasks)
|
| 46 |
+
- ACSC threat reports and advisories
|
| 47 |
+
- Australian threat landscape
|
| 48 |
+
- Cyber incident response
|
| 49 |
+
|
| 50 |
+
- **π Knowledge: Terminology** (727 tasks)
|
| 51 |
+
- Australian cybersecurity terminology
|
| 52 |
+
- ACSC glossary and definitions
|
| 53 |
+
- Industry-specific language
|
| 54 |
+
|
| 55 |
+
## Features
|
| 56 |
+
|
| 57 |
+
### π€ 26 Pre-Configured Models
|
| 58 |
+
|
| 59 |
+
Evaluate across diverse model categories:
|
| 60 |
+
|
| 61 |
+
- **Small Models (1-4B):** Phi-3, Gemma-2, Qwen, Llama 3.2, StableLM, TinyLlama
|
| 62 |
+
- **Medium Models (7-12B):** Mistral, Llama 3.1, Gemma-2-9b, Qwen-7B
|
| 63 |
+
- **π Cybersecurity-Focused:** Foundationsec-8B, DeepSeek Coder, WizardCoder, StarCoder2, CodeLlama, CodeGen25
|
| 64 |
+
- **Reasoning & Analysis:** DeepSeek LLM, Yi, SOLAR, Hermes-3
|
| 65 |
+
- **Diverse & Multilingual:** Aya-23, Falcon, OpenChat, OpenHermes
|
| 66 |
+
|
| 67 |
+
### β‘ Quick Selection Presets
|
| 68 |
+
|
| 69 |
+
- Select all small models (7) for fast testing
|
| 70 |
+
- Select all security models (6) for cybersecurity focus
|
| 71 |
+
- Select all models (26) for comprehensive evaluation
|
| 72 |
+
- Clear selection with one click
|
| 73 |
+
|
| 74 |
+
### π― Customisable Evaluation
|
| 75 |
+
|
| 76 |
+
- **Sample size:** 10-500 tasks (default: 200)
|
| 77 |
+
- **4-bit quantisation:** Reduce memory usage for larger models
|
| 78 |
+
- **Temperature:** Control response randomness (0.1-1.0)
|
| 79 |
+
- **Max tokens:** Limit response length (32-256)
|
| 80 |
+
|
| 81 |
+
### π Real-Time Results
|
| 82 |
+
|
| 83 |
+
- Live leaderboard with rankings (π₯π₯π₯)
|
| 84 |
+
- Model comparison visualisation in Australian colours
|
| 85 |
+
- Per-category performance breakdown
|
| 86 |
+
- Downloadable results (JSON format)
|
| 87 |
+
|
| 88 |
+
## Usage
|
| 89 |
+
|
| 90 |
+
1. **Select Models:** Use checkboxes or quick selection buttons
|
| 91 |
+
2. **Configure Settings:** Adjust sample size, quantisation, temperature
|
| 92 |
+
3. **Run Evaluation:** Click "π Run Evaluation"
|
| 93 |
+
4. **Monitor Progress:** Watch real-time progress and intermediate results
|
| 94 |
+
5. **Analyse Results:** Review leaderboard, charts, and category breakdowns
|
| 95 |
+
6. **Download:** Export results for further analysis
|
| 96 |
+
|
| 97 |
+
## Dataset
|
| 98 |
+
|
| 99 |
+
The benchmark is available on HuggingFace:
|
| 100 |
+
|
| 101 |
+
π **[Zen0/AusCyberBench](https://huggingface.co/datasets/Zen0/AusCyberBench)**
|
| 102 |
+
|
| 103 |
+
### Dataset Splits
|
| 104 |
+
|
| 105 |
+
- **Full:** All 13,449 tasks across all categories
|
| 106 |
+
- **Australian:** 4,899 Australia-specific tasks
|
| 107 |
+
|
| 108 |
+
## Evaluation Methodology
|
| 109 |
+
|
| 110 |
+
### Prompt Formatting
|
| 111 |
+
|
| 112 |
+
Model-specific chat templates ensure optimal performance:
|
| 113 |
+
- **Phi-3/Phi-3.5:** `<|user|>...<|end|>\n<|assistant|>`
|
| 114 |
+
- **Gemma-2:** `<start_of_turn>user\n...<end_of_turn>\n<start_of_turn>model`
|
| 115 |
+
- **Generic (Llama, Mistral, Qwen, etc.):** `[INST] ... [/INST]`
|
| 116 |
+
|
| 117 |
+
### Answer Extraction
|
| 118 |
+
|
| 119 |
+
Robust extraction for multiple-choice tasks:
|
| 120 |
+
- Primary: Regex pattern `\b([A-D])\b` matching
|
| 121 |
+
- Fallback: First character validation
|
| 122 |
+
- Handles various response formats
|
| 123 |
+
|
| 124 |
+
### Memory Management
|
| 125 |
+
|
| 126 |
+
Automatic cleanup between models:
|
| 127 |
+
- Model and tokeniser deletion
|
| 128 |
+
- CUDA cache clearing
|
| 129 |
+
- Garbage collection
|
| 130 |
+
- Prevents OOM errors on GPU instances
|
| 131 |
+
|
| 132 |
+
## Performance Expectations
|
| 133 |
+
|
| 134 |
+
Based on initial benchmarking:
|
| 135 |
+
|
| 136 |
+
- **Small Models (1-4B):** 10-25% accuracy
|
| 137 |
+
- **Medium Models (7-12B):** 15-30% accuracy
|
| 138 |
+
- **Cybersecurity Models:** 20-35% accuracy (domain-specific advantage)
|
| 139 |
+
- **Reasoning Models:** 25-40% accuracy
|
| 140 |
+
|
| 141 |
+
Performance varies significantly by category:
|
| 142 |
+
- **Essential Eight:** Higher scores (20-40%)
|
| 143 |
+
- **ISM Controls:** Lower scores (10-20%)
|
| 144 |
+
- **Terminology:** Moderate scores (15-30%)
|
| 145 |
+
|
| 146 |
+
## Technical Requirements
|
| 147 |
+
|
| 148 |
+
This Space requires GPU hardware for model inference. Free-tier GPU instances may experience:
|
| 149 |
+
- Longer evaluation times
|
| 150 |
+
- Memory constraints with larger models
|
| 151 |
+
- 4-bit quantisation recommended for 7B+ models
|
| 152 |
+
|
| 153 |
+
## Citation
|
| 154 |
+
|
| 155 |
+
If you use AusCyberBench in your research, please cite:
|
| 156 |
+
|
| 157 |
+
```bibtex
|
| 158 |
+
@dataset{auscyberbench2025,
|
| 159 |
+
title={AusCyberBench: Australia's First LLM Cybersecurity Benchmark},
|
| 160 |
+
author={Zen0},
|
| 161 |
+
year={2025},
|
| 162 |
+
publisher={HuggingFace},
|
| 163 |
+
url={https://huggingface.co/datasets/Zen0/AusCyberBench}
|
| 164 |
+
}
|
| 165 |
+
```
|
| 166 |
+
|
| 167 |
+
## License
|
| 168 |
+
|
| 169 |
+
MIT License - See LICENSE file for details
|
| 170 |
+
|
| 171 |
+
## Acknowledgements
|
| 172 |
+
|
| 173 |
+
- **Australian Cyber Security Centre (ACSC)** for Essential Eight, ISM, and threat intelligence
|
| 174 |
+
- **Office of the Australian Information Commissioner (OAIC)** for Privacy Act guidance
|
| 175 |
+
- **Department of Home Affairs** for SOCI Act resources
|
| 176 |
+
- **HuggingFace** for infrastructure and model hosting
|
| 177 |
+
|
| 178 |
+
---
|
| 179 |
+
|
| 180 |
+
**Built with Australian orthography** π¦πΊ
|
| 181 |
+
|
| 182 |
+
*Visualise β’ Analyse β’ Optimise β’ Quantisation*
|
app.py
ADDED
|
@@ -0,0 +1,503 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
AusCyberBench Evaluation Dashboard
|
| 4 |
+
Interactive Gradio Space for benchmarking LLMs on Australian cybersecurity knowledge
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import torch
|
| 9 |
+
import gc
|
| 10 |
+
import json
|
| 11 |
+
import re
|
| 12 |
+
import time
|
| 13 |
+
import pandas as pd
|
| 14 |
+
import matplotlib.pyplot as plt
|
| 15 |
+
import seaborn as sns
|
| 16 |
+
from pathlib import Path
|
| 17 |
+
from collections import defaultdict
|
| 18 |
+
from datasets import load_dataset
|
| 19 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 20 |
+
import numpy as np
|
| 21 |
+
|
| 22 |
+
# Australian color scheme
|
| 23 |
+
AUSSIE_GREEN = '#008751'
|
| 24 |
+
AUSSIE_GOLD = '#FFB81C'
|
| 25 |
+
|
| 26 |
+
# Model categories with all 26 models
|
| 27 |
+
MODELS_BY_CATEGORY = {
|
| 28 |
+
"Small Models (1-4B)": [
|
| 29 |
+
"microsoft/Phi-3-mini-4k-instruct",
|
| 30 |
+
"microsoft/Phi-3.5-mini-instruct",
|
| 31 |
+
"google/gemma-2-2b-it",
|
| 32 |
+
"Qwen/Qwen2.5-3B-Instruct",
|
| 33 |
+
"meta-llama/Llama-3.2-3B-Instruct",
|
| 34 |
+
"stabilityai/stablelm-2-1_6b-chat",
|
| 35 |
+
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
| 36 |
+
],
|
| 37 |
+
"Medium Models (7-12B)": [
|
| 38 |
+
"mistralai/Mistral-7B-Instruct-v0.3",
|
| 39 |
+
"Qwen/Qwen2.5-7B-Instruct",
|
| 40 |
+
"meta-llama/Llama-3.1-8B-Instruct",
|
| 41 |
+
"google/gemma-2-9b-it",
|
| 42 |
+
"mistralai/Mistral-Nemo-Instruct-2407",
|
| 43 |
+
],
|
| 44 |
+
"π Cybersecurity-Focused": [
|
| 45 |
+
"Eldorado-AI/Foundationsec-8B",
|
| 46 |
+
"deepseek-ai/deepseek-coder-6.7b-instruct",
|
| 47 |
+
"WizardLM/WizardCoder-Python-7B-V1.0",
|
| 48 |
+
"bigcode/starcoder2-7b",
|
| 49 |
+
"meta-llama/CodeLlama-7b-Instruct-hf",
|
| 50 |
+
"Salesforce/codegen25-7b-instruct",
|
| 51 |
+
],
|
| 52 |
+
"Reasoning & Analysis": [
|
| 53 |
+
"deepseek-ai/deepseek-llm-7b-chat",
|
| 54 |
+
"01-ai/Yi-1.5-9B-Chat",
|
| 55 |
+
"upstage/SOLAR-10.7B-Instruct-v1.0",
|
| 56 |
+
"NousResearch/Hermes-3-Llama-3.1-8B",
|
| 57 |
+
],
|
| 58 |
+
"Diverse & Multilingual": [
|
| 59 |
+
"CohereForAI/aya-23-8B",
|
| 60 |
+
"tiiuae/falcon-7b-instruct",
|
| 61 |
+
"openchat/openchat-3.5-0106",
|
| 62 |
+
"teknium/OpenHermes-2.5-Mistral-7B",
|
| 63 |
+
],
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
# Flatten all models
|
| 67 |
+
ALL_MODELS = [model for category in MODELS_BY_CATEGORY.values() for model in category]
|
| 68 |
+
|
| 69 |
+
# Global state
|
| 70 |
+
current_results = []
|
| 71 |
+
dataset_cache = None
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def load_benchmark_dataset(subset="australian", num_samples=200):
|
| 75 |
+
"""Load and sample AusCyberBench dataset"""
|
| 76 |
+
global dataset_cache
|
| 77 |
+
|
| 78 |
+
if dataset_cache is None:
|
| 79 |
+
dataset_cache = load_dataset("Zen0/AusCyberBench", split=subset)
|
| 80 |
+
|
| 81 |
+
# Proportional sampling
|
| 82 |
+
import random
|
| 83 |
+
random.seed(42)
|
| 84 |
+
|
| 85 |
+
by_category = defaultdict(list)
|
| 86 |
+
for item in dataset_cache:
|
| 87 |
+
by_category[item['category']].append(item)
|
| 88 |
+
|
| 89 |
+
total = len(dataset_cache)
|
| 90 |
+
samples = []
|
| 91 |
+
|
| 92 |
+
for cat, items in by_category.items():
|
| 93 |
+
n_cat = max(1, int(len(items) / total * num_samples))
|
| 94 |
+
if len(items) <= n_cat:
|
| 95 |
+
samples.extend(items)
|
| 96 |
+
else:
|
| 97 |
+
samples.extend(random.sample(items, n_cat))
|
| 98 |
+
|
| 99 |
+
random.shuffle(samples)
|
| 100 |
+
return samples[:num_samples]
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def format_prompt(task, model_name):
|
| 104 |
+
"""Format task as prompt with proper chat template"""
|
| 105 |
+
question = task['description']
|
| 106 |
+
|
| 107 |
+
if task.get('task_type') == 'multiple_choice' and 'options' in task:
|
| 108 |
+
options_text = "\n".join([f"{opt['id']}. {opt['text']}" for opt in task['options']])
|
| 109 |
+
|
| 110 |
+
if 'phi' in model_name.lower():
|
| 111 |
+
return f"""<|user|>
|
| 112 |
+
{question}
|
| 113 |
+
|
| 114 |
+
{options_text}
|
| 115 |
+
|
| 116 |
+
Respond with ONLY the letter of the correct answer (A, B, C, or D).<|end|>
|
| 117 |
+
<|assistant|>"""
|
| 118 |
+
elif 'gemma' in model_name.lower():
|
| 119 |
+
return f"""<start_of_turn>user
|
| 120 |
+
{question}
|
| 121 |
+
|
| 122 |
+
{options_text}
|
| 123 |
+
|
| 124 |
+
Respond with ONLY the letter of the correct answer (A, B, C, or D).<end_of_turn>
|
| 125 |
+
<start_of_turn>model
|
| 126 |
+
"""
|
| 127 |
+
else:
|
| 128 |
+
return f"""[INST] {question}
|
| 129 |
+
|
| 130 |
+
{options_text}
|
| 131 |
+
|
| 132 |
+
Respond with ONLY the letter of the correct answer (A, B, C, or D). [/INST]"""
|
| 133 |
+
else:
|
| 134 |
+
return f"""[INST] {question} [/INST]"""
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def extract_answer(response, task):
|
| 138 |
+
"""Extract answer letter from model response"""
|
| 139 |
+
response = response.strip()
|
| 140 |
+
|
| 141 |
+
if task.get('task_type') == 'multiple_choice':
|
| 142 |
+
match = re.search(r'\b([A-D])\b', response, re.IGNORECASE)
|
| 143 |
+
if match:
|
| 144 |
+
return match.group(1).upper()
|
| 145 |
+
if response and response[0].upper() in ['A', 'B', 'C', 'D']:
|
| 146 |
+
return response[0].upper()
|
| 147 |
+
return ""
|
| 148 |
+
else:
|
| 149 |
+
return response[:100]
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def cleanup_model(model, tokenizer):
|
| 153 |
+
"""Thoroughly clean up model to free memory"""
|
| 154 |
+
if model is not None:
|
| 155 |
+
del model
|
| 156 |
+
if tokenizer is not None:
|
| 157 |
+
del tokenizer
|
| 158 |
+
|
| 159 |
+
if torch.cuda.is_available():
|
| 160 |
+
torch.cuda.empty_cache()
|
| 161 |
+
torch.cuda.ipc_collect()
|
| 162 |
+
|
| 163 |
+
gc.collect()
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def evaluate_single_model(model_name, tasks, use_4bit=True, temperature=0.7, max_tokens=128, progress=gr.Progress()):
|
| 167 |
+
"""Evaluate a single model on the benchmark"""
|
| 168 |
+
progress(0, desc=f"Loading {model_name.split('/')[-1]}...")
|
| 169 |
+
|
| 170 |
+
try:
|
| 171 |
+
# Load model
|
| 172 |
+
if use_4bit:
|
| 173 |
+
quant_config = BitsAndBytesConfig(
|
| 174 |
+
load_in_4bit=True,
|
| 175 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 176 |
+
bnb_4bit_use_double_quant=True,
|
| 177 |
+
bnb_4bit_quant_type="nf4"
|
| 178 |
+
)
|
| 179 |
+
else:
|
| 180 |
+
quant_config = None
|
| 181 |
+
|
| 182 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 183 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 184 |
+
model_name,
|
| 185 |
+
quantization_config=quant_config,
|
| 186 |
+
device_map="auto",
|
| 187 |
+
trust_remote_code=True,
|
| 188 |
+
torch_dtype=torch.float16 if not use_4bit else None
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
if tokenizer.pad_token is None:
|
| 192 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 193 |
+
|
| 194 |
+
progress(0.1, desc=f"Evaluating {model_name.split('/')[-1]}...")
|
| 195 |
+
|
| 196 |
+
# Evaluate tasks
|
| 197 |
+
results = []
|
| 198 |
+
for i, task in enumerate(tasks):
|
| 199 |
+
progress((0.1 + 0.8 * i / len(tasks)), desc=f"Task {i+1}/{len(tasks)}")
|
| 200 |
+
|
| 201 |
+
try:
|
| 202 |
+
prompt = format_prompt(task, model_name)
|
| 203 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 204 |
+
|
| 205 |
+
if 'token_type_ids' in inputs:
|
| 206 |
+
inputs.pop('token_type_ids')
|
| 207 |
+
|
| 208 |
+
with torch.no_grad():
|
| 209 |
+
outputs = model.generate(
|
| 210 |
+
**inputs,
|
| 211 |
+
max_new_tokens=max_tokens,
|
| 212 |
+
temperature=temperature,
|
| 213 |
+
do_sample=True,
|
| 214 |
+
top_p=0.9,
|
| 215 |
+
pad_token_id=tokenizer.eos_token_id
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
response = tokenizer.decode(
|
| 219 |
+
outputs[0][inputs['input_ids'].shape[1]:],
|
| 220 |
+
skip_special_tokens=True
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
predicted = extract_answer(response, task)
|
| 224 |
+
correct = task.get('answer', '')
|
| 225 |
+
is_correct = predicted.upper() == correct.upper()
|
| 226 |
+
|
| 227 |
+
results.append({
|
| 228 |
+
'task_id': task.get('task_id'),
|
| 229 |
+
'category': task.get('category'),
|
| 230 |
+
'predicted': predicted,
|
| 231 |
+
'correct': correct,
|
| 232 |
+
'is_correct': is_correct
|
| 233 |
+
})
|
| 234 |
+
|
| 235 |
+
except Exception as e:
|
| 236 |
+
results.append({
|
| 237 |
+
'task_id': task.get('task_id'),
|
| 238 |
+
'category': task.get('category'),
|
| 239 |
+
'predicted': '',
|
| 240 |
+
'correct': task.get('answer', ''),
|
| 241 |
+
'is_correct': False
|
| 242 |
+
})
|
| 243 |
+
|
| 244 |
+
# Calculate metrics
|
| 245 |
+
total_correct = sum(1 for r in results if r['is_correct'])
|
| 246 |
+
overall_accuracy = (total_correct / len(results)) * 100
|
| 247 |
+
|
| 248 |
+
category_stats = defaultdict(lambda: {'correct': 0, 'total': 0})
|
| 249 |
+
for result in results:
|
| 250 |
+
cat = result['category']
|
| 251 |
+
category_stats[cat]['total'] += 1
|
| 252 |
+
if result['is_correct']:
|
| 253 |
+
category_stats[cat]['correct'] += 1
|
| 254 |
+
|
| 255 |
+
category_scores = {
|
| 256 |
+
cat: (stats['correct'] / stats['total']) * 100 if stats['total'] > 0 else 0
|
| 257 |
+
for cat, stats in category_stats.items()
|
| 258 |
+
}
|
| 259 |
+
|
| 260 |
+
progress(1.0, desc="Complete!")
|
| 261 |
+
|
| 262 |
+
return {
|
| 263 |
+
'model': model_name,
|
| 264 |
+
'overall_accuracy': overall_accuracy,
|
| 265 |
+
'total_correct': total_correct,
|
| 266 |
+
'total_tasks': len(results),
|
| 267 |
+
'category_scores': category_scores,
|
| 268 |
+
'detailed_results': results
|
| 269 |
+
}
|
| 270 |
+
|
| 271 |
+
except Exception as e:
|
| 272 |
+
return {
|
| 273 |
+
'model': model_name,
|
| 274 |
+
'error': str(e),
|
| 275 |
+
'overall_accuracy': 0,
|
| 276 |
+
'total_correct': 0,
|
| 277 |
+
'total_tasks': len(tasks)
|
| 278 |
+
}
|
| 279 |
+
|
| 280 |
+
finally:
|
| 281 |
+
cleanup_model(
|
| 282 |
+
model if 'model' in locals() else None,
|
| 283 |
+
tokenizer if 'tokenizer' in locals() else None
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
def run_evaluation(selected_models, num_samples, use_4bit, temperature, max_tokens, progress=gr.Progress()):
|
| 288 |
+
"""Run evaluation on selected models"""
|
| 289 |
+
global current_results
|
| 290 |
+
|
| 291 |
+
if not selected_models:
|
| 292 |
+
return "Please select at least one model to evaluate.", None, None
|
| 293 |
+
|
| 294 |
+
# Load dataset
|
| 295 |
+
progress(0, desc="Loading AusCyberBench dataset...")
|
| 296 |
+
tasks = load_benchmark_dataset(num_samples=num_samples)
|
| 297 |
+
|
| 298 |
+
# Evaluate each model
|
| 299 |
+
current_results = []
|
| 300 |
+
for i, model_name in enumerate(selected_models):
|
| 301 |
+
progress((i / len(selected_models)), desc=f"Model {i+1}/{len(selected_models)}")
|
| 302 |
+
|
| 303 |
+
result = evaluate_single_model(
|
| 304 |
+
model_name, tasks, use_4bit, temperature, max_tokens, progress
|
| 305 |
+
)
|
| 306 |
+
current_results.append(result)
|
| 307 |
+
|
| 308 |
+
# Yield intermediate results
|
| 309 |
+
yield format_results_table(current_results), create_comparison_chart(current_results), None
|
| 310 |
+
|
| 311 |
+
# Final results
|
| 312 |
+
final_table = format_results_table(current_results)
|
| 313 |
+
final_chart = create_comparison_chart(current_results)
|
| 314 |
+
download_data = create_download_data(current_results)
|
| 315 |
+
|
| 316 |
+
yield final_table, final_chart, download_data
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
def format_results_table(results):
|
| 320 |
+
"""Format results as DataFrame for display"""
|
| 321 |
+
if not results:
|
| 322 |
+
return pd.DataFrame()
|
| 323 |
+
|
| 324 |
+
rows = []
|
| 325 |
+
for result in results:
|
| 326 |
+
if 'error' in result:
|
| 327 |
+
rows.append({
|
| 328 |
+
'Rank': 'β',
|
| 329 |
+
'Model': result['model'].split('/')[-1],
|
| 330 |
+
'Accuracy': '0.0%',
|
| 331 |
+
'Correct/Total': f"0/{result['total_tasks']}",
|
| 332 |
+
'Status': f"Error: {result['error'][:50]}"
|
| 333 |
+
})
|
| 334 |
+
else:
|
| 335 |
+
rows.append({
|
| 336 |
+
'Rank': '',
|
| 337 |
+
'Model': result['model'].split('/')[-1],
|
| 338 |
+
'Accuracy': f"{result['overall_accuracy']:.1f}%",
|
| 339 |
+
'Correct/Total': f"{result['total_correct']}/{result['total_tasks']}",
|
| 340 |
+
'Status': 'β Complete'
|
| 341 |
+
})
|
| 342 |
+
|
| 343 |
+
df = pd.DataFrame(rows)
|
| 344 |
+
|
| 345 |
+
# Sort by accuracy and assign ranks
|
| 346 |
+
df['_sort'] = df['Accuracy'].str.replace('%', '').astype(float)
|
| 347 |
+
df = df.sort_values('_sort', ascending=False)
|
| 348 |
+
df['Rank'] = ['π₯', 'π₯', 'π₯'] + [''] * (len(df) - 3)
|
| 349 |
+
df = df.drop('_sort', axis=1)
|
| 350 |
+
|
| 351 |
+
return df
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
def create_comparison_chart(results):
|
| 355 |
+
"""Create bar chart comparing model accuracies"""
|
| 356 |
+
if not results or all('error' in r for r in results):
|
| 357 |
+
return None
|
| 358 |
+
|
| 359 |
+
valid_results = [r for r in results if 'error' not in r]
|
| 360 |
+
if not valid_results:
|
| 361 |
+
return None
|
| 362 |
+
|
| 363 |
+
models = [r['model'].split('/')[-1] for r in valid_results]
|
| 364 |
+
accuracies = [r['overall_accuracy'] for r in valid_results]
|
| 365 |
+
|
| 366 |
+
# Sort by accuracy
|
| 367 |
+
sorted_pairs = sorted(zip(models, accuracies), key=lambda x: x[1], reverse=True)
|
| 368 |
+
models, accuracies = zip(*sorted_pairs)
|
| 369 |
+
|
| 370 |
+
plt.figure(figsize=(12, max(6, len(models) * 0.4)))
|
| 371 |
+
bars = plt.barh(models, accuracies, color=AUSSIE_GREEN)
|
| 372 |
+
|
| 373 |
+
# Add accuracy labels
|
| 374 |
+
for i, (model, acc) in enumerate(zip(models, accuracies)):
|
| 375 |
+
plt.text(acc + 1, i, f'{acc:.1f}%', va='center', fontweight='bold')
|
| 376 |
+
|
| 377 |
+
plt.xlabel('Accuracy (%)', fontsize=12, fontweight='bold')
|
| 378 |
+
plt.title('AusCyberBench: Model Comparison', fontsize=14, fontweight='bold')
|
| 379 |
+
plt.xlim(0, 100)
|
| 380 |
+
plt.grid(axis='x', alpha=0.3)
|
| 381 |
+
plt.tight_layout()
|
| 382 |
+
|
| 383 |
+
return plt
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
def create_download_data(results):
|
| 387 |
+
"""Create downloadable results file"""
|
| 388 |
+
if not results:
|
| 389 |
+
return None
|
| 390 |
+
|
| 391 |
+
# Create comprehensive results JSON
|
| 392 |
+
output = {
|
| 393 |
+
'timestamp': time.strftime('%Y-%m-%d %H:%M:%S'),
|
| 394 |
+
'benchmark': 'AusCyberBench',
|
| 395 |
+
'results': results
|
| 396 |
+
}
|
| 397 |
+
|
| 398 |
+
# Save to file
|
| 399 |
+
output_path = 'auscyberbench_results.json'
|
| 400 |
+
with open(output_path, 'w') as f:
|
| 401 |
+
json.dump(output, f, indent=2)
|
| 402 |
+
|
| 403 |
+
return output_path
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
# Build Gradio interface
|
| 407 |
+
with gr.Blocks(title="AusCyberBench Evaluation Dashboard", theme=gr.themes.Soft()) as app:
|
| 408 |
+
gr.Markdown("""
|
| 409 |
+
# π¦πΊ AusCyberBench Evaluation Dashboard
|
| 410 |
+
|
| 411 |
+
**Australia's First LLM Cybersecurity Benchmark**
|
| 412 |
+
|
| 413 |
+
Test multiple language models on Australian cybersecurity knowledge including Essential Eight,
|
| 414 |
+
ISM Controls, Privacy Act, SOCI Act, and ACSC Threat Intelligence.
|
| 415 |
+
""")
|
| 416 |
+
|
| 417 |
+
with gr.Row():
|
| 418 |
+
with gr.Column(scale=1):
|
| 419 |
+
gr.Markdown("### π Model Selection")
|
| 420 |
+
|
| 421 |
+
# Quick selection buttons
|
| 422 |
+
with gr.Row():
|
| 423 |
+
btn_small = gr.Button("Select Small Models (7)", size="sm")
|
| 424 |
+
btn_security = gr.Button("Select Security Models (6)", size="sm")
|
| 425 |
+
btn_all = gr.Button("Select All (26)", size="sm")
|
| 426 |
+
btn_clear = gr.Button("Clear", size="sm")
|
| 427 |
+
|
| 428 |
+
# Model checkboxes by category
|
| 429 |
+
model_checkboxes = []
|
| 430 |
+
for category, models in MODELS_BY_CATEGORY.items():
|
| 431 |
+
gr.Markdown(f"**{category}**")
|
| 432 |
+
for model in models:
|
| 433 |
+
short_name = model.split('/')[-1]
|
| 434 |
+
cb = gr.Checkbox(label=f"{short_name}", value=False)
|
| 435 |
+
model_checkboxes.append((cb, model))
|
| 436 |
+
|
| 437 |
+
gr.Markdown("### βοΈ Settings")
|
| 438 |
+
num_samples = gr.Slider(10, 500, value=200, step=10, label="Number of Tasks")
|
| 439 |
+
use_4bit = gr.Checkbox(label="Use 4-bit Quantisation", value=True)
|
| 440 |
+
temperature = gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Temperature")
|
| 441 |
+
max_tokens = gr.Slider(32, 256, value=128, step=32, label="Max Tokens")
|
| 442 |
+
|
| 443 |
+
run_btn = gr.Button("π Run Evaluation", variant="primary", size="lg")
|
| 444 |
+
|
| 445 |
+
with gr.Column(scale=2):
|
| 446 |
+
gr.Markdown("### π Results")
|
| 447 |
+
|
| 448 |
+
results_table = gr.Dataframe(
|
| 449 |
+
label="Leaderboard",
|
| 450 |
+
headers=["Rank", "Model", "Accuracy", "Correct/Total", "Status"],
|
| 451 |
+
interactive=False
|
| 452 |
+
)
|
| 453 |
+
|
| 454 |
+
comparison_plot = gr.Plot(label="Model Comparison")
|
| 455 |
+
|
| 456 |
+
download_file = gr.File(label="Download Results (JSON)")
|
| 457 |
+
|
| 458 |
+
# Quick select button actions
|
| 459 |
+
def select_small():
|
| 460 |
+
return [gr.update(value=(model in MODELS_BY_CATEGORY["Small Models (1-4B)"]))
|
| 461 |
+
for cb, model in model_checkboxes]
|
| 462 |
+
|
| 463 |
+
def select_security():
|
| 464 |
+
return [gr.update(value=(model in MODELS_BY_CATEGORY["π Cybersecurity-Focused"]))
|
| 465 |
+
for cb, model in model_checkboxes]
|
| 466 |
+
|
| 467 |
+
def select_all():
|
| 468 |
+
return [gr.update(value=True) for _ in model_checkboxes]
|
| 469 |
+
|
| 470 |
+
def clear_all():
|
| 471 |
+
return [gr.update(value=False) for _ in model_checkboxes]
|
| 472 |
+
|
| 473 |
+
btn_small.click(select_small, outputs=[cb for cb, _ in model_checkboxes])
|
| 474 |
+
btn_security.click(select_security, outputs=[cb for cb, _ in model_checkboxes])
|
| 475 |
+
btn_all.click(select_all, outputs=[cb for cb, _ in model_checkboxes])
|
| 476 |
+
btn_clear.click(clear_all, outputs=[cb for cb, _ in model_checkboxes])
|
| 477 |
+
|
| 478 |
+
# Run evaluation
|
| 479 |
+
def prepare_evaluation(*checkbox_values):
|
| 480 |
+
selected = [model for (cb, model), val in zip(model_checkboxes, checkbox_values) if val]
|
| 481 |
+
return selected
|
| 482 |
+
|
| 483 |
+
run_btn.click(
|
| 484 |
+
fn=lambda *args: run_evaluation(
|
| 485 |
+
prepare_evaluation(*args[:-4]),
|
| 486 |
+
int(args[-4]),
|
| 487 |
+
args[-3],
|
| 488 |
+
args[-2],
|
| 489 |
+
int(args[-1])
|
| 490 |
+
),
|
| 491 |
+
inputs=[cb for cb, _ in model_checkboxes] + [num_samples, use_4bit, temperature, max_tokens],
|
| 492 |
+
outputs=[results_table, comparison_plot, download_file]
|
| 493 |
+
)
|
| 494 |
+
|
| 495 |
+
gr.Markdown("""
|
| 496 |
+
---
|
| 497 |
+
**Dataset:** [Zen0/AusCyberBench](https://huggingface.co/datasets/Zen0/AusCyberBench) |
|
| 498 |
+
**License:** Apache 2.0 |
|
| 499 |
+
**Models:** 26 LLMs including security-focused variants
|
| 500 |
+
""")
|
| 501 |
+
|
| 502 |
+
if __name__ == "__main__":
|
| 503 |
+
app.queue().launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.0.0
|
| 2 |
+
transformers>=4.40.0
|
| 3 |
+
torch>=2.0.0
|
| 4 |
+
accelerate>=0.27.0
|
| 5 |
+
bitsandbytes>=0.43.0
|
| 6 |
+
datasets>=2.18.0
|
| 7 |
+
pandas>=2.0.0
|
| 8 |
+
matplotlib>=3.7.0
|
| 9 |
+
seaborn>=0.13.0
|