Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,529 Bytes
3ae7741 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from scipy.ndimage import map_coordinates
import cv2
import math
from os import makedirs
from os.path import join, exists
# Based on https://github.com/sunset1995/py360convert
class Equirec2Cube:
def __init__(self, equ_h, equ_w, face_w):
'''
equ_h: int, height of the equirectangular image
equ_w: int, width of the equirectangular image
face_w: int, the length of each face of the cubemap
'''
self.equ_h = equ_h
self.equ_w = equ_w
self.face_w = face_w
self._xyzcube()
self._xyz2coor()
# For convert R-distance to Z-depth for CubeMaps
cosmap = 1 / np.sqrt((2 * self.grid[..., 0]) ** 2 + (2 * self.grid[..., 1]) ** 2 + 1)
self.cosmaps = np.concatenate(6 * [cosmap], axis=1)[..., np.newaxis]
def _xyzcube(self):
'''
Compute the xyz cordinates of the unit cube in [F R B L U D] format.
'''
self.xyz = np.zeros((self.face_w, self.face_w * 6, 3), np.float32)
rng = np.linspace(-0.5, 0.5, num=self.face_w, dtype=np.float32)
self.grid = np.stack(np.meshgrid(rng, -rng), -1)
# Front face (z = 0.5)
self.xyz[:, 0 * self.face_w:1 * self.face_w, [0, 1]] = self.grid
self.xyz[:, 0 * self.face_w:1 * self.face_w, 2] = 0.5
# Right face (x = 0.5)
self.xyz[:, 1 * self.face_w:2 * self.face_w, [2, 1]] = self.grid[:, ::-1]
self.xyz[:, 1 * self.face_w:2 * self.face_w, 0] = 0.5
# Back face (z = -0.5)
self.xyz[:, 2 * self.face_w:3 * self.face_w, [0, 1]] = self.grid[:, ::-1]
self.xyz[:, 2 * self.face_w:3 * self.face_w, 2] = -0.5
# Left face (x = -0.5)
self.xyz[:, 3 * self.face_w:4 * self.face_w, [2, 1]] = self.grid
self.xyz[:, 3 * self.face_w:4 * self.face_w, 0] = -0.5
# Up face (y = 0.5)
self.xyz[:, 4 * self.face_w:5 * self.face_w, [0, 2]] = self.grid[::-1, :]
self.xyz[:, 4 * self.face_w:5 * self.face_w, 1] = 0.5
# Down face (y = -0.5)
self.xyz[:, 5 * self.face_w:6 * self.face_w, [0, 2]] = self.grid
self.xyz[:, 5 * self.face_w:6 * self.face_w, 1] = -0.5
def _xyz2coor(self):
# x, y, z to longitude and latitude
x, y, z = np.split(self.xyz, 3, axis=-1)
lon = np.arctan2(x, z)
c = np.sqrt(x ** 2 + z ** 2)
lat = np.arctan2(y, c)
# longitude and latitude to equirectangular coordinate
self.coor_x = (lon / (2 * np.pi) + 0.5) * self.equ_w - 0.5
self.coor_y = (-lat / np.pi + 0.5) * self.equ_h - 0.5
def sample_equirec(self, e_img, order=0):
pad_u = np.roll(e_img[[0]], self.equ_w // 2, 1)
pad_d = np.roll(e_img[[-1]], self.equ_w // 2, 1)
e_img = np.concatenate([e_img, pad_d, pad_u], 0)
# pad_l = e_img[:, [0]]
# pad_r = e_img[:, [-1]]
# e_img = np.concatenate([e_img, pad_l, pad_r], 1)
return map_coordinates(e_img, [self.coor_y, self.coor_x],
order=order, mode='wrap')[..., 0]
def run(self, equ_img, equ_dep=None):
h, w = equ_img.shape[:2]
if h != self.equ_h or w != self.equ_w:
equ_img = cv2.resize(equ_img, (self.equ_w, self.equ_h))
if equ_dep is not None:
equ_dep = cv2.resize(equ_dep, (self.equ_w, self.equ_h), interpolation=cv2.INTER_NEAREST)
cube_img = np.stack([self.sample_equirec(equ_img[..., i], order=1)
for i in range(equ_img.shape[2])], axis=-1)
if equ_dep is not None:
cube_dep = np.stack([self.sample_equirec(equ_dep[..., i], order=0)
for i in range(equ_dep.shape[2])], axis=-1)
cube_dep = cube_dep * self.cosmaps
if equ_dep is not None:
return cube_img, cube_dep
else:
return cube_img
# Based on https://github.com/sunset1995/py360convert
class Cube2Equirec(nn.Module):
def __init__(self, face_w, equ_h, equ_w):
super(Cube2Equirec, self).__init__()
'''
face_w: int, the length of each face of the cubemap
equ_h: int, height of the equirectangular image
equ_w: int, width of the equirectangular image
'''
self.face_w = face_w
self.equ_h = equ_h
self.equ_w = equ_w
# Get face id to each pixel: 0F 1R 2B 3L 4U 5D
self._equirect_facetype()
self._equirect_faceuv()
def _equirect_facetype(self):
'''
0F 1R 2B 3L 4U 5D
'''
tp = np.roll(np.arange(4).repeat(self.equ_w // 4)[None, :].repeat(self.equ_h, 0), 3 * self.equ_w // 8, 1)
# Prepare ceil mask
mask = np.zeros((self.equ_h, self.equ_w // 4), bool)
idx = np.linspace(-np.pi, np.pi, self.equ_w // 4) / 4
idx = self.equ_h // 2 - np.round(np.arctan(np.cos(idx)) * self.equ_h / np.pi).astype(int)
for i, j in enumerate(idx):
mask[:j, i] = 1
mask = np.roll(np.concatenate([mask] * 4, 1), 3 * self.equ_w // 8, 1)
tp[mask] = 4
tp[np.flip(mask, 0)] = 5
self.tp = tp
self.mask = mask
def _equirect_faceuv(self):
lon = ((np.linspace(0, self.equ_w -1, num=self.equ_w, dtype=np.float32 ) +0.5 ) /self.equ_w - 0.5 ) * 2 *np.pi
lat = -((np.linspace(0, self.equ_h -1, num=self.equ_h, dtype=np.float32 ) +0.5 ) /self.equ_h -0.5) * np.pi
lon, lat = np.meshgrid(lon, lat)
coor_u = np.zeros((self.equ_h, self.equ_w), dtype=np.float32)
coor_v = np.zeros((self.equ_h, self.equ_w), dtype=np.float32)
for i in range(4):
mask = (self.tp == i)
coor_u[mask] = 0.5 * np.tan(lon[mask] - np.pi * i / 2)
coor_v[mask] = -0.5 * np.tan(lat[mask]) / np.cos(lon[mask] - np.pi * i / 2)
mask = (self.tp == 4)
c = 0.5 * np.tan(np.pi / 2 - lat[mask])
coor_u[mask] = c * np.sin(lon[mask])
coor_v[mask] = c * np.cos(lon[mask])
mask = (self.tp == 5)
c = 0.5 * np.tan(np.pi / 2 - np.abs(lat[mask]))
coor_u[mask] = c * np.sin(lon[mask])
coor_v[mask] = -c * np.cos(lon[mask])
# Final renormalize
coor_u = (np.clip(coor_u, -0.5, 0.5)) * 2
coor_v = (np.clip(coor_v, -0.5, 0.5)) * 2
# Convert to torch tensor
self.tp = torch.from_numpy(self.tp.astype(np.float32) / 2.5 - 1)
self.coor_u = torch.from_numpy(coor_u)
self.coor_v = torch.from_numpy(coor_v)
sample_grid = torch.stack([self.coor_u, self.coor_v, self.tp], dim=-1).view(1, 1, self.equ_h, self.equ_w, 3)
self.sample_grid = nn.Parameter(sample_grid, requires_grad=False)
def forward(self, cube_feat):
bs, ch, h, w = cube_feat.shape
assert h == self.face_w and w // 6 == self.face_w
cube_feat = cube_feat.view(bs, ch, 1, h, w)
cube_feat = torch.cat(torch.split(cube_feat, self.face_w, dim=-1), dim=2)
cube_feat = cube_feat.view([bs, ch, 6, self.face_w, self.face_w])
sample_grid = torch.cat(bs * [self.sample_grid], dim=0)
equi_feat = F.grid_sample(cube_feat, sample_grid, padding_mode="border", align_corners=True)
return equi_feat.squeeze(2)
# generate patches in a closed-form
# the transformation and equation is referred from http://blog.nitishmutha.com/equirectangular/360degree/2017/06/12/How-to-project-Equirectangular-image-to-rectilinear-view.html
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def uv2xyz(uv):
xyz = np.zeros((*uv.shape[:-1], 3), dtype = np.float32)
xyz[..., 0] = np.multiply(np.cos(uv[..., 1]), np.sin(uv[..., 0]))
xyz[..., 1] = np.multiply(np.cos(uv[..., 1]), np.cos(uv[..., 0]))
xyz[..., 2] = np.sin(uv[..., 1])
return xyz
def equi2pers(erp_img, fov, nrows, patch_size):
bs, _, erp_h, erp_w = erp_img.shape
height, width = pair(patch_size)
fov_h, fov_w = pair(fov)
FOV = torch.tensor([fov_w/360.0, fov_h/180.0], dtype=torch.float32)
PI = math.pi
PI_2 = math.pi * 0.5
PI2 = math.pi * 2
yy, xx = torch.meshgrid(torch.linspace(0, 1, height), torch.linspace(0, 1, width))
screen_points = torch.stack([xx.flatten(), yy.flatten()], -1)
if nrows==4:
num_rows = 4
num_cols = [3, 6, 6, 3]
phi_centers = [-67.5, -22.5, 22.5, 67.5]
if nrows==6:
num_rows = 6
num_cols = [3, 8, 12, 12, 8, 3]
phi_centers = [-75.2, -45.93, -15.72, 15.72, 45.93, 75.2]
if nrows==3:
num_rows = 3
num_cols = [3, 4, 3]
phi_centers = [-60, 0, 60]
if nrows==5:
num_rows = 5
num_cols = [3, 6, 8, 6, 3]
phi_centers = [-72.2, -36.1, 0, 36.1, 72.2]
phi_interval = 180 // num_rows
all_combos = []
erp_mask = []
for i, n_cols in enumerate(num_cols):
for j in np.arange(n_cols):
theta_interval = 360 / n_cols
theta_center = j * theta_interval + theta_interval / 2
center = [theta_center, phi_centers[i]]
all_combos.append(center)
up = phi_centers[i] + phi_interval / 2
down = phi_centers[i] - phi_interval / 2
left = theta_center - theta_interval / 2
right = theta_center + theta_interval / 2
up = int((up + 90) / 180 * erp_h)
down = int((down + 90) / 180 * erp_h)
left = int(left / 360 * erp_w)
right = int(right / 360 * erp_w)
mask = np.zeros((erp_h, erp_w), dtype=int)
mask[down:up, left:right] = 1
erp_mask.append(mask)
all_combos = np.vstack(all_combos)
shifts = np.arange(all_combos.shape[0]) * width
shifts = torch.from_numpy(shifts).float()
erp_mask = np.stack(erp_mask)
erp_mask = torch.from_numpy(erp_mask).float()
num_patch = all_combos.shape[0]
center_point = torch.from_numpy(all_combos).float() # -180 to 180, -90 to 90
center_point[:, 0] = (center_point[:, 0]) / 360 #0 to 1
center_point[:, 1] = (center_point[:, 1] + 90) / 180 #0 to 1
cp = center_point * 2 - 1
center_p = cp.clone()
cp[:, 0] = cp[:, 0] * PI
cp[:, 1] = cp[:, 1] * PI_2
cp = cp.unsqueeze(1)
convertedCoord = screen_points * 2 - 1
convertedCoord[:, 0] = convertedCoord[:, 0] * PI
convertedCoord[:, 1] = convertedCoord[:, 1] * PI_2
convertedCoord = convertedCoord * (torch.ones(screen_points.shape, dtype=torch.float32) * FOV)
convertedCoord = convertedCoord.unsqueeze(0).repeat(cp.shape[0], 1, 1)
x = convertedCoord[:, :, 0]
y = convertedCoord[:, :, 1]
rou = torch.sqrt(x ** 2 + y ** 2)
c = torch.atan(rou)
sin_c = torch.sin(c)
cos_c = torch.cos(c)
lat = torch.asin(cos_c * torch.sin(cp[:, :, 1]) + (y * sin_c * torch.cos(cp[:, :, 1])) / rou)
lon = cp[:, :, 0] + torch.atan2(x * sin_c, rou * torch.cos(cp[:, :, 1]) * cos_c - y * torch.sin(cp[:, :, 1]) * sin_c)
lat_new = lat / PI_2
lon_new = lon / PI
lon_new[lon_new > 1] -= 2
lon_new[lon_new<-1] += 2
lon_new = lon_new.view(1, num_patch, height, width).permute(0, 2, 1, 3).contiguous().view(height, num_patch*width)
lat_new = lat_new.view(1, num_patch, height, width).permute(0, 2, 1, 3).contiguous().view(height, num_patch*width)
grid = torch.stack([lon_new, lat_new], -1)
grid = grid.unsqueeze(0).repeat(bs, 1, 1, 1).to(erp_img.device)
pers = F.grid_sample(erp_img, grid, mode='bilinear', padding_mode='border', align_corners=True)
pers = F.unfold(pers, kernel_size=(height, width), stride=(height, width))
pers = pers.reshape(bs, -1, height, width, num_patch)
grid_tmp = torch.stack([lon, lat], -1)
xyz = uv2xyz(grid_tmp)
xyz = xyz.reshape(num_patch, height, width, 3).transpose(0, 3, 1, 2)
xyz = torch.from_numpy(xyz).to(pers.device).contiguous()
uv = grid[0, ...].reshape(height, width, num_patch, 2).permute(2, 3, 0, 1)
uv = uv.contiguous()
return pers, xyz, uv, center_p
def pers2equi(pers_img, fov, nrows, patch_size, erp_size, layer_name):
bs = pers_img.shape[0]
channel = pers_img.shape[1]
device=pers_img.device
height, width = pair(patch_size)
fov_h, fov_w = pair(fov)
erp_h, erp_w = pair(erp_size)
n_patch = pers_img.shape[-1]
grid_dir = './grid'
if not exists(grid_dir):
makedirs(grid_dir)
grid_file = join(grid_dir, layer_name + '.pth')
if not exists(grid_file):
FOV = torch.tensor([fov_w/360.0, fov_h/180.0], dtype=torch.float32)
PI = math.pi
PI_2 = math.pi * 0.5
PI2 = math.pi * 2
if nrows==4:
num_rows = 4
num_cols = [3, 6, 6, 3]
phi_centers = [-67.5, -22.5, 22.5, 67.5]
if nrows==6:
num_rows = 6
num_cols = [3, 8, 12, 12, 8, 3]
phi_centers = [-75.2, -45.93, -15.72, 15.72, 45.93, 75.2]
if nrows==3:
num_rows = 3
num_cols = [3, 4, 3]
phi_centers = [-59.6, 0, 59.6]
if nrows==5:
num_rows = 5
num_cols = [3, 6, 8, 6, 3]
phi_centers = [-72.2, -36.1, 0, 36.1, 72.2]
phi_interval = 180 // num_rows
all_combos = []
for i, n_cols in enumerate(num_cols):
for j in np.arange(n_cols):
theta_interval = 360 / n_cols
theta_center = j * theta_interval + theta_interval / 2
center = [theta_center, phi_centers[i]]
all_combos.append(center)
all_combos = np.vstack(all_combos)
n_patch = all_combos.shape[0]
center_point = torch.from_numpy(all_combos).float() # -180 to 180, -90 to 90
center_point[:, 0] = (center_point[:, 0]) / 360 #0 to 1
center_point[:, 1] = (center_point[:, 1] + 90) / 180 #0 to 1
cp = center_point * 2 - 1
cp[:, 0] = cp[:, 0] * PI
cp[:, 1] = cp[:, 1] * PI_2
cp = cp.unsqueeze(1)
lat_grid, lon_grid = torch.meshgrid(torch.linspace(-PI_2, PI_2, erp_h), torch.linspace(-PI, PI, erp_w))
lon_grid = lon_grid.float().reshape(1, -1)#.repeat(num_rows*num_cols, 1)
lat_grid = lat_grid.float().reshape(1, -1)#.repeat(num_rows*num_cols, 1)
cos_c = torch.sin(cp[..., 1]) * torch.sin(lat_grid) + torch.cos(cp[..., 1]) * torch.cos(lat_grid) * torch.cos(lon_grid - cp[..., 0])
new_x = (torch.cos(lat_grid) * torch.sin(lon_grid - cp[..., 0])) / cos_c
new_y = (torch.cos(cp[..., 1])*torch.sin(lat_grid) - torch.sin(cp[...,1])*torch.cos(lat_grid)*torch.cos(lon_grid-cp[...,0])) / cos_c
new_x = new_x / FOV[0] / PI # -1 to 1
new_y = new_y / FOV[1] / PI_2
cos_c_mask = cos_c.reshape(n_patch, erp_h, erp_w)
cos_c_mask = torch.where(cos_c_mask > 0, 1, 0)
w_list = torch.zeros((n_patch, erp_h, erp_w, 4), dtype=torch.float32)
new_x_patch = (new_x + 1) * 0.5 * height
new_y_patch = (new_y + 1) * 0.5 * width
new_x_patch = new_x_patch.reshape(n_patch, erp_h, erp_w)
new_y_patch = new_y_patch.reshape(n_patch, erp_h, erp_w)
mask = torch.where((new_x_patch < width) & (new_x_patch > 0) & (new_y_patch < height) & (new_y_patch > 0), 1, 0)
mask *= cos_c_mask
x0 = torch.floor(new_x_patch).type(torch.int64)
x1 = x0 + 1
y0 = torch.floor(new_y_patch).type(torch.int64)
y1 = y0 + 1
x0 = torch.clamp(x0, 0, width-1)
x1 = torch.clamp(x1, 0, width-1)
y0 = torch.clamp(y0, 0, height-1)
y1 = torch.clamp(y1, 0, height-1)
wa = (x1.type(torch.float32)-new_x_patch) * (y1.type(torch.float32)-new_y_patch)
wb = (x1.type(torch.float32)-new_x_patch) * (new_y_patch-y0.type(torch.float32))
wc = (new_x_patch-x0.type(torch.float32)) * (y1.type(torch.float32)-new_y_patch)
wd = (new_x_patch-x0.type(torch.float32)) * (new_y_patch-y0.type(torch.float32))
wa = wa * mask.expand_as(wa)
wb = wb * mask.expand_as(wb)
wc = wc * mask.expand_as(wc)
wd = wd * mask.expand_as(wd)
w_list[..., 0] = wa
w_list[..., 1] = wb
w_list[..., 2] = wc
w_list[..., 3] = wd
save_file = {'x0':x0, 'y0':y0, 'x1':x1, 'y1':y1, 'w_list': w_list, 'mask':mask}
torch.save(save_file, grid_file)
else:
# the online merge really takes time
# pre-calculate the grid for once and use it during training
load_file = torch.load(grid_file)
#print('load_file')
x0 = load_file['x0']
y0 = load_file['y0']
x1 = load_file['x1']
y1 = load_file['y1']
w_list = load_file['w_list']
mask = load_file['mask']
w_list = w_list.to(device)
mask = mask.to(device)
z = torch.arange(n_patch)
z = z.reshape(n_patch, 1, 1)
Ia = pers_img[:, :, y0, x0, z]
Ib = pers_img[:, :, y1, x0, z]
Ic = pers_img[:, :, y0, x1, z]
Id = pers_img[:, :, y1, x1, z]
output_a = Ia * mask.expand_as(Ia)
output_b = Ib * mask.expand_as(Ib)
output_c = Ic * mask.expand_as(Ic)
output_d = Id * mask.expand_as(Id)
output_a = output_a.permute(0, 1, 3, 4, 2)
output_b = output_b.permute(0, 1, 3, 4, 2)
output_c = output_c.permute(0, 1, 3, 4, 2)
output_d = output_d.permute(0, 1, 3, 4, 2)
w_list = w_list.permute(1, 2, 0, 3)
w_list = w_list.flatten(2)
w_list *= torch.gt(w_list, 1e-5).type(torch.float32)
w_list = F.normalize(w_list, p=1, dim=-1).reshape(erp_h, erp_w, n_patch, 4)
w_list = w_list.unsqueeze(0).unsqueeze(0)
output = output_a * w_list[..., 0] + output_b * w_list[..., 1] + \
output_c * w_list[..., 2] + output_d * w_list[..., 3]
img_erp = output.sum(-1)
return img_erp
def img2windows(img, H_sp, W_sp):
"""
img: B C H W
"""
B, C, H, W = img.shape
img_reshape = img.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp)
img_perm = img_reshape.permute(0, 2, 4, 3, 5, 1).contiguous().reshape(-1, H_sp, W_sp, C)
return img_perm
def windows2img(img_splits_hw, H_sp, W_sp, H, W):
"""
img_splits_hw: B' H W C
"""
B = int(img_splits_hw.shape[0] / (H * W / H_sp / W_sp))
img = img_splits_hw.view(B, H // H_sp, W // W_sp, H_sp, W_sp, -1)
img = img.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return img |