File size: 18,529 Bytes
3ae7741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from scipy.ndimage import map_coordinates
import cv2
import math
from os import makedirs
from os.path import join, exists

# Based on https://github.com/sunset1995/py360convert
class Equirec2Cube:
    def __init__(self, equ_h, equ_w, face_w):
        '''
        equ_h: int, height of the equirectangular image
        equ_w: int, width of the equirectangular image
        face_w: int, the length of each face of the cubemap
        '''

        self.equ_h = equ_h
        self.equ_w = equ_w
        self.face_w = face_w

        self._xyzcube()
        self._xyz2coor()

        # For convert R-distance to Z-depth for CubeMaps
        cosmap = 1 / np.sqrt((2 * self.grid[..., 0]) ** 2 + (2 * self.grid[..., 1]) ** 2 + 1)
        self.cosmaps = np.concatenate(6 * [cosmap], axis=1)[..., np.newaxis]

    def _xyzcube(self):
        '''
        Compute the xyz cordinates of the unit cube in [F R B L U D] format.
        '''
        self.xyz = np.zeros((self.face_w, self.face_w * 6, 3), np.float32)
        rng = np.linspace(-0.5, 0.5, num=self.face_w, dtype=np.float32)
        self.grid = np.stack(np.meshgrid(rng, -rng), -1)

        # Front face (z = 0.5)
        self.xyz[:, 0 * self.face_w:1 * self.face_w, [0, 1]] = self.grid
        self.xyz[:, 0 * self.face_w:1 * self.face_w, 2] = 0.5

        # Right face (x = 0.5)
        self.xyz[:, 1 * self.face_w:2 * self.face_w, [2, 1]] = self.grid[:, ::-1]
        self.xyz[:, 1 * self.face_w:2 * self.face_w, 0] = 0.5

        # Back face (z = -0.5)
        self.xyz[:, 2 * self.face_w:3 * self.face_w, [0, 1]] = self.grid[:, ::-1]
        self.xyz[:, 2 * self.face_w:3 * self.face_w, 2] = -0.5

        # Left face (x = -0.5)
        self.xyz[:, 3 * self.face_w:4 * self.face_w, [2, 1]] = self.grid
        self.xyz[:, 3 * self.face_w:4 * self.face_w, 0] = -0.5

        # Up face (y = 0.5)
        self.xyz[:, 4 * self.face_w:5 * self.face_w, [0, 2]] = self.grid[::-1, :]
        self.xyz[:, 4 * self.face_w:5 * self.face_w, 1] = 0.5

        # Down face (y = -0.5)
        self.xyz[:, 5 * self.face_w:6 * self.face_w, [0, 2]] = self.grid
        self.xyz[:, 5 * self.face_w:6 * self.face_w, 1] = -0.5

    def _xyz2coor(self):

        # x, y, z to longitude and latitude
        x, y, z = np.split(self.xyz, 3, axis=-1)
        lon = np.arctan2(x, z)
        c = np.sqrt(x ** 2 + z ** 2)
        lat = np.arctan2(y, c)

        # longitude and latitude to equirectangular coordinate
        self.coor_x = (lon / (2 * np.pi) + 0.5) * self.equ_w - 0.5
        self.coor_y = (-lat / np.pi + 0.5) * self.equ_h - 0.5

    def sample_equirec(self, e_img, order=0):
        pad_u = np.roll(e_img[[0]], self.equ_w // 2, 1)
        pad_d = np.roll(e_img[[-1]], self.equ_w // 2, 1)
        e_img = np.concatenate([e_img, pad_d, pad_u], 0)
        # pad_l = e_img[:, [0]]
        # pad_r = e_img[:, [-1]]
        # e_img = np.concatenate([e_img, pad_l, pad_r], 1)

        return map_coordinates(e_img, [self.coor_y, self.coor_x],
                               order=order, mode='wrap')[..., 0]

    def run(self, equ_img, equ_dep=None):

        h, w = equ_img.shape[:2]
        if h != self.equ_h or w != self.equ_w:
            equ_img = cv2.resize(equ_img, (self.equ_w, self.equ_h))
            if equ_dep is not None:
                equ_dep = cv2.resize(equ_dep, (self.equ_w, self.equ_h), interpolation=cv2.INTER_NEAREST)

        cube_img = np.stack([self.sample_equirec(equ_img[..., i], order=1)
                             for i in range(equ_img.shape[2])], axis=-1)

        if equ_dep is not None:
            cube_dep = np.stack([self.sample_equirec(equ_dep[..., i], order=0)
                                 for i in range(equ_dep.shape[2])], axis=-1)
            cube_dep = cube_dep * self.cosmaps

        if equ_dep is not None:
            return cube_img, cube_dep
        else:
            return cube_img

# Based on https://github.com/sunset1995/py360convert
class Cube2Equirec(nn.Module):
    def __init__(self, face_w, equ_h, equ_w):
        super(Cube2Equirec, self).__init__()
        '''
        face_w: int, the length of each face of the cubemap
        equ_h: int, height of the equirectangular image
        equ_w: int, width of the equirectangular image
        '''

        self.face_w = face_w
        self.equ_h = equ_h
        self.equ_w = equ_w


        # Get face id to each pixel: 0F 1R 2B 3L 4U 5D
        self._equirect_facetype()
        self._equirect_faceuv()


    def _equirect_facetype(self):
        '''
        0F 1R 2B 3L 4U 5D
        '''
        tp = np.roll(np.arange(4).repeat(self.equ_w // 4)[None, :].repeat(self.equ_h, 0), 3 * self.equ_w // 8, 1)

        # Prepare ceil mask
        mask = np.zeros((self.equ_h, self.equ_w // 4), bool)
        idx = np.linspace(-np.pi, np.pi, self.equ_w // 4) / 4
        idx = self.equ_h // 2 - np.round(np.arctan(np.cos(idx)) * self.equ_h / np.pi).astype(int)
        for i, j in enumerate(idx):
            mask[:j, i] = 1
        mask = np.roll(np.concatenate([mask] * 4, 1), 3 * self.equ_w // 8, 1)

        tp[mask] = 4
        tp[np.flip(mask, 0)] = 5

        self.tp = tp
        self.mask = mask

    def _equirect_faceuv(self):

        lon = ((np.linspace(0, self.equ_w -1, num=self.equ_w, dtype=np.float32 ) +0.5 ) /self.equ_w - 0.5 ) * 2 *np.pi
        lat = -((np.linspace(0, self.equ_h -1, num=self.equ_h, dtype=np.float32 ) +0.5 ) /self.equ_h -0.5) * np.pi

        lon, lat = np.meshgrid(lon, lat)

        coor_u = np.zeros((self.equ_h, self.equ_w), dtype=np.float32)
        coor_v = np.zeros((self.equ_h, self.equ_w), dtype=np.float32)

        for i in range(4):
            mask = (self.tp == i)
            coor_u[mask] = 0.5 * np.tan(lon[mask] - np.pi * i / 2)
            coor_v[mask] = -0.5 * np.tan(lat[mask]) / np.cos(lon[mask] - np.pi * i / 2)

        mask = (self.tp == 4)
        c = 0.5 * np.tan(np.pi / 2 - lat[mask])
        coor_u[mask] = c * np.sin(lon[mask])
        coor_v[mask] = c * np.cos(lon[mask])

        mask = (self.tp == 5)
        c = 0.5 * np.tan(np.pi / 2 - np.abs(lat[mask]))
        coor_u[mask] = c * np.sin(lon[mask])
        coor_v[mask] = -c * np.cos(lon[mask])

        # Final renormalize
        coor_u = (np.clip(coor_u, -0.5, 0.5)) * 2
        coor_v = (np.clip(coor_v, -0.5, 0.5)) * 2

        # Convert to torch tensor
        self.tp = torch.from_numpy(self.tp.astype(np.float32) / 2.5 - 1)
        self.coor_u = torch.from_numpy(coor_u)
        self.coor_v = torch.from_numpy(coor_v)

        sample_grid = torch.stack([self.coor_u, self.coor_v, self.tp], dim=-1).view(1, 1, self.equ_h, self.equ_w, 3)
        self.sample_grid = nn.Parameter(sample_grid, requires_grad=False)

    def forward(self, cube_feat):

        bs, ch, h, w = cube_feat.shape
        assert h == self.face_w and w // 6 == self.face_w

        cube_feat = cube_feat.view(bs, ch, 1,  h, w)
        cube_feat = torch.cat(torch.split(cube_feat, self.face_w, dim=-1), dim=2)

        cube_feat = cube_feat.view([bs, ch, 6, self.face_w, self.face_w])
        sample_grid = torch.cat(bs * [self.sample_grid], dim=0)
        equi_feat = F.grid_sample(cube_feat, sample_grid, padding_mode="border", align_corners=True)

        return equi_feat.squeeze(2)
    
# generate patches in a closed-form
# the transformation and equation is referred from http://blog.nitishmutha.com/equirectangular/360degree/2017/06/12/How-to-project-Equirectangular-image-to-rectilinear-view.html
def pair(t):
    return t if isinstance(t, tuple) else (t, t)

def uv2xyz(uv):
    xyz = np.zeros((*uv.shape[:-1], 3), dtype = np.float32)
    xyz[..., 0] = np.multiply(np.cos(uv[..., 1]), np.sin(uv[..., 0]))
    xyz[..., 1] = np.multiply(np.cos(uv[..., 1]), np.cos(uv[..., 0]))
    xyz[..., 2] = np.sin(uv[..., 1])
    return xyz

def equi2pers(erp_img, fov, nrows, patch_size):
    bs, _, erp_h, erp_w = erp_img.shape
    height, width = pair(patch_size)
    fov_h, fov_w = pair(fov)
    FOV = torch.tensor([fov_w/360.0, fov_h/180.0], dtype=torch.float32)

    PI = math.pi
    PI_2 = math.pi * 0.5
    PI2 = math.pi * 2
    yy, xx = torch.meshgrid(torch.linspace(0, 1, height), torch.linspace(0, 1, width))
    screen_points = torch.stack([xx.flatten(), yy.flatten()], -1)
    
    if nrows==4:    
        num_rows = 4
        num_cols = [3, 6, 6, 3]
        phi_centers = [-67.5, -22.5, 22.5, 67.5]
    if nrows==6:    
        num_rows = 6
        num_cols = [3, 8, 12, 12, 8, 3]
        phi_centers = [-75.2, -45.93, -15.72, 15.72, 45.93, 75.2]
    if nrows==3:
        num_rows = 3
        num_cols = [3, 4, 3]
        phi_centers = [-60, 0, 60]     
    if nrows==5:
        num_rows = 5
        num_cols = [3, 6, 8, 6, 3]
        phi_centers = [-72.2, -36.1, 0, 36.1, 72.2]
            
    phi_interval = 180 // num_rows
    all_combos = []
    erp_mask = []
    for i, n_cols in enumerate(num_cols):
        for j in np.arange(n_cols):
            theta_interval = 360 / n_cols
            theta_center = j * theta_interval + theta_interval / 2

            center = [theta_center, phi_centers[i]]
            all_combos.append(center)
            up = phi_centers[i] + phi_interval / 2
            down = phi_centers[i] - phi_interval / 2
            left = theta_center - theta_interval / 2
            right = theta_center + theta_interval / 2
            up = int((up + 90) / 180 * erp_h)
            down = int((down + 90) / 180 * erp_h)
            left = int(left / 360 * erp_w)
            right = int(right / 360 * erp_w)
            mask = np.zeros((erp_h, erp_w), dtype=int)
            mask[down:up, left:right] = 1
            erp_mask.append(mask)
    all_combos = np.vstack(all_combos) 
    shifts = np.arange(all_combos.shape[0]) * width
    shifts = torch.from_numpy(shifts).float()
    erp_mask = np.stack(erp_mask)
    erp_mask = torch.from_numpy(erp_mask).float()
    num_patch = all_combos.shape[0]

    center_point = torch.from_numpy(all_combos).float()  # -180 to 180, -90 to 90
    center_point[:, 0] = (center_point[:, 0]) / 360  #0 to 1
    center_point[:, 1] = (center_point[:, 1] + 90) / 180  #0 to 1

    cp = center_point * 2 - 1
    center_p = cp.clone()
    cp[:, 0] = cp[:, 0] * PI
    cp[:, 1] = cp[:, 1] * PI_2
    cp = cp.unsqueeze(1)
    convertedCoord = screen_points * 2 - 1
    convertedCoord[:, 0] = convertedCoord[:, 0] * PI
    convertedCoord[:, 1] = convertedCoord[:, 1] * PI_2
    convertedCoord = convertedCoord * (torch.ones(screen_points.shape, dtype=torch.float32) * FOV)
    convertedCoord = convertedCoord.unsqueeze(0).repeat(cp.shape[0], 1, 1)

    x = convertedCoord[:, :, 0]
    y = convertedCoord[:, :, 1]

    rou = torch.sqrt(x ** 2 + y ** 2)
    c = torch.atan(rou)
    sin_c = torch.sin(c)
    cos_c = torch.cos(c)
    lat = torch.asin(cos_c * torch.sin(cp[:, :, 1]) + (y * sin_c * torch.cos(cp[:, :, 1])) / rou)
    lon = cp[:, :, 0] + torch.atan2(x * sin_c, rou * torch.cos(cp[:, :, 1]) * cos_c - y * torch.sin(cp[:, :, 1]) * sin_c)
    lat_new = lat / PI_2 
    lon_new = lon / PI 
    lon_new[lon_new > 1] -= 2
    lon_new[lon_new<-1] += 2 

    lon_new = lon_new.view(1, num_patch, height, width).permute(0, 2, 1, 3).contiguous().view(height, num_patch*width)
    lat_new = lat_new.view(1, num_patch, height, width).permute(0, 2, 1, 3).contiguous().view(height, num_patch*width)
    grid = torch.stack([lon_new, lat_new], -1)
    grid = grid.unsqueeze(0).repeat(bs, 1, 1, 1).to(erp_img.device)
    pers = F.grid_sample(erp_img, grid, mode='bilinear', padding_mode='border', align_corners=True)
    pers = F.unfold(pers, kernel_size=(height, width), stride=(height, width))
    pers = pers.reshape(bs, -1, height, width, num_patch)
  
    grid_tmp = torch.stack([lon, lat], -1)
    xyz = uv2xyz(grid_tmp)
    xyz = xyz.reshape(num_patch, height, width, 3).transpose(0, 3, 1, 2)
    xyz = torch.from_numpy(xyz).to(pers.device).contiguous()
    
    uv = grid[0, ...].reshape(height, width, num_patch, 2).permute(2, 3, 0, 1)
    uv = uv.contiguous()
    return pers, xyz, uv, center_p

def pers2equi(pers_img, fov, nrows, patch_size, erp_size, layer_name):
    bs = pers_img.shape[0]
    channel = pers_img.shape[1]
    device=pers_img.device
    height, width = pair(patch_size)
    fov_h, fov_w = pair(fov)
    erp_h, erp_w = pair(erp_size)
    n_patch = pers_img.shape[-1]     
    grid_dir = './grid'
    if not exists(grid_dir):
        makedirs(grid_dir)
    grid_file = join(grid_dir, layer_name + '.pth')  
    
    if not exists(grid_file):  
        FOV = torch.tensor([fov_w/360.0, fov_h/180.0], dtype=torch.float32)

        PI = math.pi
        PI_2 = math.pi * 0.5
        PI2 = math.pi * 2

        if nrows==4:    
            num_rows = 4
            num_cols = [3, 6, 6, 3]
            phi_centers = [-67.5, -22.5, 22.5, 67.5]
        if nrows==6:    
            num_rows = 6
            num_cols = [3, 8, 12, 12, 8, 3]
            phi_centers = [-75.2, -45.93, -15.72, 15.72, 45.93, 75.2]
        if nrows==3:
            num_rows = 3
            num_cols = [3, 4, 3]
            phi_centers = [-59.6, 0, 59.6]
        if nrows==5:
            num_rows = 5
            num_cols = [3, 6, 8, 6, 3]
            phi_centers = [-72.2, -36.1, 0, 36.1, 72.2] 
        phi_interval = 180 // num_rows
        all_combos = []

        for i, n_cols in enumerate(num_cols):
            for j in np.arange(n_cols):
                theta_interval = 360 / n_cols
                theta_center = j * theta_interval + theta_interval / 2

                center = [theta_center, phi_centers[i]]
                all_combos.append(center)
                
                
        all_combos = np.vstack(all_combos) 
        n_patch = all_combos.shape[0]
        
        center_point = torch.from_numpy(all_combos).float()  # -180 to 180, -90 to 90
        center_point[:, 0] = (center_point[:, 0]) / 360  #0 to 1
        center_point[:, 1] = (center_point[:, 1] + 90) / 180  #0 to 1

        cp = center_point * 2 - 1
        cp[:, 0] = cp[:, 0] * PI
        cp[:, 1] = cp[:, 1] * PI_2
        cp = cp.unsqueeze(1)
        
        lat_grid, lon_grid = torch.meshgrid(torch.linspace(-PI_2, PI_2, erp_h), torch.linspace(-PI, PI, erp_w))
        lon_grid = lon_grid.float().reshape(1, -1)#.repeat(num_rows*num_cols, 1)
        lat_grid = lat_grid.float().reshape(1, -1)#.repeat(num_rows*num_cols, 1) 
        cos_c = torch.sin(cp[..., 1]) * torch.sin(lat_grid) + torch.cos(cp[..., 1]) * torch.cos(lat_grid) * torch.cos(lon_grid - cp[..., 0])
        new_x = (torch.cos(lat_grid) * torch.sin(lon_grid - cp[..., 0])) / cos_c
        new_y = (torch.cos(cp[..., 1])*torch.sin(lat_grid) - torch.sin(cp[...,1])*torch.cos(lat_grid)*torch.cos(lon_grid-cp[...,0])) / cos_c
        new_x = new_x / FOV[0] / PI   # -1 to 1
        new_y = new_y / FOV[1] / PI_2
        cos_c_mask = cos_c.reshape(n_patch, erp_h, erp_w)
        cos_c_mask = torch.where(cos_c_mask > 0, 1, 0)
        
        w_list = torch.zeros((n_patch, erp_h, erp_w, 4), dtype=torch.float32)

        new_x_patch = (new_x + 1) * 0.5 * height
        new_y_patch = (new_y + 1) * 0.5 * width 
        new_x_patch = new_x_patch.reshape(n_patch, erp_h, erp_w)
        new_y_patch = new_y_patch.reshape(n_patch, erp_h, erp_w)
        mask = torch.where((new_x_patch < width) & (new_x_patch > 0) & (new_y_patch < height) & (new_y_patch > 0), 1, 0)
        mask *= cos_c_mask

        x0 = torch.floor(new_x_patch).type(torch.int64)
        x1 = x0 + 1
        y0 = torch.floor(new_y_patch).type(torch.int64)
        y1 = y0 + 1

        x0 = torch.clamp(x0, 0, width-1)
        x1 = torch.clamp(x1, 0, width-1)
        y0 = torch.clamp(y0, 0, height-1)
        y1 = torch.clamp(y1, 0, height-1)

        wa = (x1.type(torch.float32)-new_x_patch) * (y1.type(torch.float32)-new_y_patch)
        wb = (x1.type(torch.float32)-new_x_patch) * (new_y_patch-y0.type(torch.float32))
        wc = (new_x_patch-x0.type(torch.float32)) * (y1.type(torch.float32)-new_y_patch)
        wd = (new_x_patch-x0.type(torch.float32)) * (new_y_patch-y0.type(torch.float32))

        wa = wa * mask.expand_as(wa)
        wb = wb * mask.expand_as(wb)
        wc = wc * mask.expand_as(wc)
        wd = wd * mask.expand_as(wd)

        w_list[..., 0] = wa
        w_list[..., 1] = wb
        w_list[..., 2] = wc
        w_list[..., 3] = wd

       
        save_file = {'x0':x0, 'y0':y0, 'x1':x1, 'y1':y1, 'w_list': w_list, 'mask':mask}
        torch.save(save_file, grid_file)
    else:
        # the online merge really takes time
        # pre-calculate the grid for once and use it during training
        load_file = torch.load(grid_file)
        #print('load_file')
        x0 = load_file['x0']
        y0 = load_file['y0']
        x1 = load_file['x1']
        y1 = load_file['y1']
        w_list = load_file['w_list']
        mask = load_file['mask']

    w_list = w_list.to(device)
    mask = mask.to(device)
    z = torch.arange(n_patch)
    z = z.reshape(n_patch, 1, 1)
    Ia = pers_img[:, :, y0, x0, z]
    Ib = pers_img[:, :, y1, x0, z]
    Ic = pers_img[:, :, y0, x1, z]
    Id = pers_img[:, :, y1, x1, z]
    output_a = Ia * mask.expand_as(Ia)
    output_b = Ib * mask.expand_as(Ib)
    output_c = Ic * mask.expand_as(Ic)
    output_d = Id * mask.expand_as(Id)

    output_a = output_a.permute(0, 1, 3, 4, 2)
    output_b = output_b.permute(0, 1, 3, 4, 2)
    output_c = output_c.permute(0, 1, 3, 4, 2)
    output_d = output_d.permute(0, 1, 3, 4, 2)   
    w_list = w_list.permute(1, 2, 0, 3)
    w_list = w_list.flatten(2)
    w_list *= torch.gt(w_list, 1e-5).type(torch.float32)
    w_list = F.normalize(w_list, p=1, dim=-1).reshape(erp_h, erp_w, n_patch, 4)
    w_list = w_list.unsqueeze(0).unsqueeze(0)
    output = output_a * w_list[..., 0] + output_b * w_list[..., 1] + \
        output_c * w_list[..., 2] + output_d * w_list[..., 3]
    img_erp = output.sum(-1) 

    return img_erp

def img2windows(img, H_sp, W_sp):
    """
    img: B C H W
    """
    B, C, H, W = img.shape
    img_reshape = img.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp)
    img_perm = img_reshape.permute(0, 2, 4, 3, 5, 1).contiguous().reshape(-1, H_sp, W_sp, C)
    return img_perm

def windows2img(img_splits_hw, H_sp, W_sp, H, W):
    """
    img_splits_hw: B' H W C
    """
    B = int(img_splits_hw.shape[0] / (H * W / H_sp / W_sp))

    img = img_splits_hw.view(B, H // H_sp, W // W_sp, H_sp, W_sp, -1)
    img = img.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return img