Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,998 Bytes
3ae7741 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import math
import copy
import random
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from safetensors.torch import save_file
from safetensors import safe_open
from torch.nn.parameter import Parameter
from depth_anything_v2_metric.depth_anything_v2.dpt import DepthAnythingV2
class _LoRA_qkv(nn.Module):
"""In Sam it is implemented as
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0)
"""
def __init__(
self,
qkv: nn.Module,
linear_a_q: nn.Module,
linear_b_q: nn.Module,
linear_a_v: nn.Module,
linear_b_v: nn.Module,
):
super().__init__()
self.qkv = qkv
self.linear_a_q = linear_a_q
self.linear_b_q = linear_b_q
self.linear_a_v = linear_a_v
self.linear_b_v = linear_b_v
self.dim = qkv.in_features
self.w_identity = torch.eye(qkv.in_features)
def forward(self, x):
qkv = self.qkv(x) # B,N,3*org_C
new_q = self.linear_b_q(self.linear_a_q(x))
new_v = self.linear_b_v(self.linear_a_v(x))
qkv[:, :, : self.dim] += new_q
qkv[:, :, -self.dim:] += new_v
return qkv
class LoRA(nn.Module):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
def save_fc_parameters(self, filename: str) -> None:
r"""Only safetensors is supported now.
pip install safetensor if you do not have one installed yet.
"""
assert filename.endswith(".safetensors")
_in = self.lora_vit.head.in_features
_out = self.lora_vit.head.out_features
fc_tensors = {f"fc_{_in}in_{_out}out": self.lora_vit.head.weight}
save_file(fc_tensors, filename)
def load_fc_parameters(self, filename: str) -> None:
r"""Only safetensors is supported now.
pip install safetensor if you do not have one installed yet.
"""
assert filename.endswith(".safetensors")
_in = self.lora_vit.head.in_features
_out = self.lora_vit.head.out_features
with safe_open(filename, framework="pt") as f:
saved_key = f"fc_{_in}in_{_out}out"
try:
saved_tensor = f.get_tensor(saved_key)
self.lora_vit.head.weight = Parameter(saved_tensor)
except ValueError:
print("this fc weight is not for this model")
def save_lora_parameters(self, filename: str) -> None:
r"""Only safetensors is supported now.
pip install safetensor if you do not have one installed yet.
save both lora and fc parameters.
"""
assert filename.endswith(".safetensors")
num_layer = len(self.w_As) # actually, it is half
a_tensors = {f"w_a_{i:03d}": self.w_As[i].weight for i in range(num_layer)}
b_tensors = {f"w_b_{i:03d}": self.w_Bs[i].weight for i in range(num_layer)}
_in = self.lora_vit.head.in_features
_out = self.lora_vit.head.out_features
fc_tensors = {f"fc_{_in}in_{_out}out": self.lora_vit.head.weight}
merged_dict = {**a_tensors, **b_tensors, **fc_tensors}
save_file(merged_dict, filename)
def load_lora_parameters(self, filename: str) -> None:
r"""Only safetensors is supported now.
pip install safetensor if you do not have one installed yet.\
load both lora and fc parameters.
"""
assert filename.endswith(".safetensors")
with safe_open(filename, framework="pt") as f:
for i, w_A_linear in enumerate(self.w_As):
saved_key = f"w_a_{i:03d}"
saved_tensor = f.get_tensor(saved_key)
w_A_linear.weight = Parameter(saved_tensor)
for i, w_B_linear in enumerate(self.w_Bs):
saved_key = f"w_b_{i:03d}"
saved_tensor = f.get_tensor(saved_key)
w_B_linear.weight = Parameter(saved_tensor)
_in = self.lora_vit.head.in_features
_out = self.lora_vit.head.out_features
saved_key = f"fc_{_in}in_{_out}out"
try:
saved_tensor = f.get_tensor(saved_key)
self.lora_vit.head.weight = Parameter(saved_tensor)
except ValueError:
print("this fc weight is not for this model")
def reset_parameters(self) -> None:
for w_A in self.w_As:
nn.init.kaiming_uniform_(w_A.weight, a=math.sqrt(5))
for w_B in self.w_Bs:
nn.init.zeros_(w_B.weight)
class LoRA_Depth_Anything_v2(LoRA):
"""Applies low-rank adaptation to a Depth Anything model's image encoder.
Args:
sam_model: a vision transformer model, see base_vit.py
r: rank of LoRA
num_classes: how many classes the model output, default to the vit model
lora_layer: which layer we apply LoRA.
Examples::
>>> model = ViT('B_16_imagenet1k')
>>> lora_model = LoRA_ViT(model, r=4)
>>> preds = lora_model(img)
>>> print(preds.shape)
torch.Size([1, 1000])
"""
def __init__(self, da_model: DepthAnythingV2, r: int, lora_layer=None):
super(LoRA_Depth_Anything_v2, self).__init__()
assert r > 0
# base_vit_dim = sam_model.image_encoder.patch_embed.proj.out_channels
# dim = base_vit_dim
if lora_layer:
self.lora_layer = lora_layer
else:
self.lora_layer = list(range(len(da_model.pretrained.blocks)))
# create for storage, then we can init them or load weights
self.w_As = [] # These are linear layers
self.w_Bs = []
# lets freeze first
for param in da_model.pretrained.parameters():
param.requires_grad = False
# Here, we do the surgery
for t_layer_i, blk in enumerate(da_model.pretrained.blocks):
# If we only want few lora layer instead of all
if t_layer_i not in self.lora_layer:
continue
w_qkv_linear = blk.attn.qkv
self.dim = w_qkv_linear.in_features
w_a_linear_q = nn.Linear(self.dim, r, bias=False)
w_b_linear_q = nn.Linear(r, self.dim, bias=False)
w_a_linear_v = nn.Linear(self.dim, r, bias=False)
w_b_linear_v = nn.Linear(r, self.dim, bias=False)
self.w_As.append(w_a_linear_q)
self.w_Bs.append(w_b_linear_q)
self.w_As.append(w_a_linear_v)
self.w_Bs.append(w_b_linear_v)
blk.attn.qkv = _LoRA_qkv(
w_qkv_linear,
w_a_linear_q,
w_b_linear_q,
w_a_linear_v,
w_b_linear_v,
)
self.reset_parameters()
self.lora_vit = da_model |