File size: 5,081 Bytes
1924502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# πŸš€ Deployment Guide for Smart Object Size Estimator

This guide explains how to deploy the Smart Object Size Estimator to Hugging Face Spaces.

## πŸ“ Required Files

Make sure you have all these files in your HuggingFace Space:

```
β”œβ”€β”€ app.py                 # Main Gradio application
β”œβ”€β”€ requirements.txt       # Python dependencies
β”œβ”€β”€ config.yaml           # HuggingFace Space configuration
β”œβ”€β”€ README.md             # Project documentation
β”œβ”€β”€ DEPLOYMENT.md         # This deployment guide
└── goal2/                # Source code directory
    └── src/
        └── agent/
            β”œβ”€β”€ __init__.py
            β”œβ”€β”€ models.py      # AI model loading
            β”œβ”€β”€ geometry.py    # Size calculations
            └── io.py         # Image processing utilities
```

## πŸ”§ Step-by-Step Deployment

### 1. Create a New HuggingFace Space

1. Go to [huggingface.co/spaces](https://huggingface.co/spaces)
2. Click "Create new Space"
3. Choose:
   - **Space name**: `smart-object-size-estimator` (or your preference)
   - **License**: MIT
   - **SDK**: Gradio
   - **Hardware**: CPU Basic (free tier) or GPU if available

### 2. Upload Files

Upload all the files listed above to your Space. You can either:

- Use the web interface to drag & drop files
- Use git to clone and push files
- Use the HuggingFace CLI

### 3. Model Weight Configuration

The app automatically downloads model weights:

- **Depth Anything V2**: Downloaded from HuggingFace Hub
- **SAM**: Downloaded from Facebook's repository

No manual model upload required!

### 4. Environment Configuration

The `config.yaml` file configures:

- Python version: 3.9+
- Gradio SDK version: 4.44.0
- Hardware requirements: CPU (upgradeable to GPU)

### 5. Dependencies Installation

All dependencies are listed in `requirements.txt`:

- Core ML: PyTorch, transformers
- Image processing: OpenCV, PIL, matplotlib
- Web interface: Gradio
- Utilities: NumPy, scikit-image

## 🚦 Launch Process

1. **Upload files** β†’ Space shows "Building..."
2. **Install dependencies** β†’ Takes ~2-3 minutes
3. **Download models** β†’ First run takes ~1-2 minutes
4. **Ready!** β†’ App accessible at your Space URL

## πŸ“Š Expected Resource Usage

### CPU Version (Free Tier)

- **RAM**: ~2-4 GB during inference
- **Storage**: ~3 GB (models + dependencies)
- **Speed**: 10-30 seconds per image

### GPU Version (Paid Tier)

- **RAM**: ~4-6 GB during inference
- **Speed**: 3-8 seconds per image
- **Cost**: Variable based on usage

## πŸ” Troubleshooting

### Common Issues

1. **"Model download failed"**

   - Solution: Check internet connectivity, retry after a few minutes
   - Models are large (1-2 GB total)

2. **"Out of memory" errors**

   - Solution: Upgrade to GPU hardware or reduce image sizes
   - The app automatically resizes very large images

3. **"Import errors"**

   - Solution: Check `requirements.txt` versions
   - Ensure all dependencies are properly listed

4. **Slow processing**
   - Solution: Consider upgrading to GPU hardware
   - CPU processing is slower but works fine

### Debug Mode

To enable debugging, set `debug=True` in the `demo.launch()` call:

```python
demo.launch(share=True, debug=True)
```

## 🎯 Performance Optimization

### For Better Speed:

1. Upgrade to GPU hardware
2. Use smaller input images when possible
3. Consider caching models if using persistent storage

### For Better Accuracy:

1. Use camera-specific presets when available
2. Ensure good lighting in input images
3. Choose reference objects with known precise dimensions

## πŸ” Privacy & Security

- **No data storage**: Images are processed in memory only
- **No user tracking**: No personal data collected
- **Model privacy**: All processing happens on HuggingFace servers
- **Open source**: All code is publicly available

## πŸ“ˆ Monitoring & Analytics

HuggingFace Spaces provides built-in analytics:

- Usage statistics
- Performance metrics
- Error logs
- Resource consumption

Access these through your Space settings panel.

## πŸ“ž Support

If you encounter issues:

1. **Check the Space logs** in the HuggingFace interface
2. **Review the README.md** for usage instructions
3. **Test with example images** to isolate problems
4. **Consider hardware upgrades** for performance issues

## πŸ”„ Updates & Maintenance

To update the app:

1. Modify files in your local copy
2. Push changes to the Space repository
3. Space will automatically rebuild
4. Test thoroughly after updates

## πŸ“‹ Pre-Launch Checklist

- [ ] All required files uploaded
- [ ] `config.yaml` properly configured
- [ ] `requirements.txt` includes all dependencies
- [ ] Test with sample images
- [ ] Verify camera presets work
- [ ] Check reference object system
- [ ] Ensure error handling works
- [ ] Documentation is complete

## πŸŽ‰ Launch!

Once everything is set up, your Space will be live at:
`https://huggingface.co/spaces/[your-username]/[space-name]`

Share this URL with users and enjoy your deployed AI-powered size estimation tool!