Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| from threading import Thread | |
| from functools import partial | |
| tokenizer = AutoTokenizer.from_pretrained("IlyaGusev/saiga_llama3_8b") | |
| model = AutoModelForCausalLM.from_pretrained("IlyaGusev/saiga_llama3_8b", torch_dtype=torch.bfloat16) | |
| model = model | |
| def transform_history(history): | |
| transformed_history = [] | |
| for qa_pair in history: | |
| transformed_history.append({"role": "user", "content": qa_pair[0]}) | |
| transformed_history.append({"role": "assistant", "content": qa_pair[1]}) | |
| return transformed_history | |
| def predict(message, history): | |
| # print(history) [[вопрос1, ответ1], [вопрос2, ответ2]...] | |
| history = transform_history(history) | |
| history_transformer_format = history + [{"role": "user", "content": message}, | |
| {"role": "assistant", "content": ""}] | |
| model_inputs = tokenizer.apply_chat_template(history_transformer_format, return_tensors="pt") | |
| streamer = TextIteratorStreamer(tokenizer, timeout=300, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| streamer=streamer, | |
| max_new_tokens=1024, | |
| do_sample=True, | |
| top_p=0.95, | |
| top_k=1000, | |
| temperature=1.0, | |
| num_beams=1, | |
| ) | |
| generating_func = partial(model.generate, model_inputs) | |
| t = Thread(target=generating_func, kwargs=generate_kwargs) | |
| t.start() | |
| partial_message = "" | |
| for new_token in streamer: | |
| if 'assistant' not in new_token: | |
| partial_message += new_token | |
| yield partial_message | |
| gr.ChatInterface(predict).launch(share=True) | |