Spaces:
Sleeping
Sleeping
some fixes in generating kwargs
Browse files
app.py
CHANGED
|
@@ -1,40 +1,23 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer,
|
| 4 |
from threading import Thread
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained("IlyaGusev/saiga_llama3_8b")
|
| 8 |
model = AutoModelForCausalLM.from_pretrained("IlyaGusev/saiga_llama3_8b", torch_dtype=torch.bfloat16)
|
| 9 |
-
model = model
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
class StopOnTokens(StoppingCriteria):
|
| 13 |
-
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
| 14 |
-
stop_ids = [29, 0]
|
| 15 |
-
for stop_id in stop_ids:
|
| 16 |
-
if input_ids[0][-1] == stop_id:
|
| 17 |
-
return True
|
| 18 |
-
return False
|
| 19 |
|
| 20 |
|
| 21 |
def predict(message, history):
|
| 22 |
print(history)
|
| 23 |
history_transformer_format = history + [{"role": "user", "content": message},
|
| 24 |
{"role": "assistant", "content": ""}]
|
| 25 |
-
stop = StopOnTokens()
|
| 26 |
|
| 27 |
-
# messages = "".join(["".join(["<|start_header_id|>user<|end_header_id|>\n"+item[0],
|
| 28 |
-
# "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n"+item[1]])
|
| 29 |
-
# for item in history_transformer_format])
|
| 30 |
-
# messages = [{"role": "user", item[0], "content": item[1]} for item in history_transformer_format]
|
| 31 |
-
#print(messages)
|
| 32 |
-
|
| 33 |
-
# model_inputs = tokenizer([messages], return_tensors="pt") # .to("cuda")
|
| 34 |
model_inputs = tokenizer.apply_chat_template(history_transformer_format, return_tensors="pt")
|
| 35 |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
| 36 |
generate_kwargs = dict(
|
| 37 |
-
model_inputs,
|
| 38 |
streamer=streamer,
|
| 39 |
max_new_tokens=1024,
|
| 40 |
do_sample=True,
|
|
@@ -42,9 +25,9 @@ def predict(message, history):
|
|
| 42 |
top_k=1000,
|
| 43 |
temperature=1.0,
|
| 44 |
num_beams=1,
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
t = Thread(target=
|
| 48 |
t.start()
|
| 49 |
|
| 50 |
partial_message = ""
|
|
@@ -53,4 +36,5 @@ def predict(message, history):
|
|
| 53 |
partial_message += new_token
|
| 54 |
yield partial_message
|
| 55 |
|
|
|
|
| 56 |
gr.ChatInterface(predict).launch(share=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 4 |
from threading import Thread
|
| 5 |
+
from functools import partial
|
| 6 |
|
| 7 |
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained("IlyaGusev/saiga_llama3_8b")
|
| 9 |
model = AutoModelForCausalLM.from_pretrained("IlyaGusev/saiga_llama3_8b", torch_dtype=torch.bfloat16)
|
| 10 |
+
model = model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
def predict(message, history):
|
| 14 |
print(history)
|
| 15 |
history_transformer_format = history + [{"role": "user", "content": message},
|
| 16 |
{"role": "assistant", "content": ""}]
|
|
|
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
model_inputs = tokenizer.apply_chat_template(history_transformer_format, return_tensors="pt")
|
| 19 |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
| 20 |
generate_kwargs = dict(
|
|
|
|
| 21 |
streamer=streamer,
|
| 22 |
max_new_tokens=1024,
|
| 23 |
do_sample=True,
|
|
|
|
| 25 |
top_k=1000,
|
| 26 |
temperature=1.0,
|
| 27 |
num_beams=1,
|
| 28 |
+
)
|
| 29 |
+
generating_func = partial(model.generate, model_inputs)
|
| 30 |
+
t = Thread(target=generating_func, kwargs=generate_kwargs)
|
| 31 |
t.start()
|
| 32 |
|
| 33 |
partial_message = ""
|
|
|
|
| 36 |
partial_message += new_token
|
| 37 |
yield partial_message
|
| 38 |
|
| 39 |
+
|
| 40 |
gr.ChatInterface(predict).launch(share=True)
|