File size: 56,123 Bytes
8d72f48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Read in documents using LangChain's loaders\n",
    "# Take everything in all the sub-folders of our knowledgebase\n",
    "\n",
    "import glob\n",
    "import os\n",
    "\n",
    "# imports for langchain, plotly and Chroma\n",
    "\n",
    "from langchain.document_loaders import DirectoryLoader, TextLoader\n",
    "from langchain.text_splitter import CharacterTextSplitter\n",
    "from langchain.schema import Document\n",
    "from langchain.embeddings.openai import OpenAIEmbeddings\n",
    "from langchain.chat_models import ChatOpenAI\n",
    "from langchain_chroma import Chroma\n",
    "import matplotlib.pyplot as plt\n",
    "from sklearn.manifold import TSNE\n",
    "import numpy as np\n",
    "import plotly.graph_objects as go\n",
    "from langchain.memory import ConversationBufferMemory\n",
    "from langchain.chains import ConversationalRetrievalChain\n",
    "from langchain.embeddings import HuggingFaceEmbeddings"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Total number of chunks: 6800\n",
      "Document types found: {'academic_calendar', 'admissions', 'research', 'tuition', 'about', 'resources', 'contact', 'policies', 'academics', 'sports', 'scholarships', 'financial_aid', 'events', 'exchange', 'campus', 'student_support', 'news'}\n"
     ]
    }
   ],
   "source": [
    "folders = glob.glob(\"usiu-knowledge-base/*\")\n",
    "\n",
    "def add_metadata(doc, doc_type):\n",
    "    doc.metadata[\"doc_type\"] = doc_type\n",
    "    return doc\n",
    "\n",
    "# With thanks to CG and Jon R, students on the course, for this fix needed for some users \n",
    "text_loader_kwargs = {'encoding': 'utf-8'}\n",
    "# If that doesn't work, some Windows users might need to uncomment the next line instead\n",
    "# text_loader_kwargs={'autodetect_encoding': True}\n",
    "\n",
    "documents = []\n",
    "for folder in folders:\n",
    "    doc_type = os.path.basename(folder)\n",
    "    loader = DirectoryLoader(folder, glob=\"**/*.md\", loader_cls=TextLoader, loader_kwargs=text_loader_kwargs)\n",
    "    folder_docs = loader.load()\n",
    "    documents.extend([add_metadata(doc, doc_type) for doc in folder_docs])\n",
    "\n",
    "text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\n",
    "chunks = text_splitter.split_documents(documents)\n",
    "\n",
    "print(f\"Total number of chunks: {len(chunks)}\")\n",
    "print(f\"Document types found: {set(doc.metadata['doc_type'] for doc in documents)}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'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'"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Load environment variables in a file called .env\n",
    "\n",
    "from dotenv import load_dotenv\n",
    "\n",
    "\n",
    "load_dotenv()\n",
    "# os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')\n",
    "os.getenv('OPENAI_API_KEY')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "6800\n",
      "[Document(metadata={'doc_type': 'research', 'source': 'usiu-knowledge-base/research/20250330031216_apply_now_admission_requirements.md'}, page_content='# Admission Requirements - USIU-Africa URL: https://www.usiu.ac.ke/apply-now/admission-requirements/'), Document(metadata={'doc_type': 'tuition', 'source': 'usiu-knowledge-base/tuition/20250330203921_apply_now_admission_requirements.md'}, page_content='# Admission Requirements - USIU-Africa URL: https://www.usiu.ac.ke/apply-now/admission-requirements/'), Document(metadata={'doc_type': 'sports', 'source': 'usiu-knowledge-base/sports/20250330090137_apply_now_admission_requirements.md'}, page_content='# Admission Requirements - USIU-Africa URL: https://www.usiu.ac.ke/apply-now/admission-requirements/'), Document(metadata={'doc_type': 'admissions', 'source': 'usiu-knowledge-base/admissions/20250330003916_apply_now_admission_requirements.md'}, page_content='# Admission Requirements - USIU-Africa URL: https://www.usiu.ac.ke/apply-now/admission-requirements/'), Document(metadata={'doc_type': 'tuition', 'source': 'usiu-knowledge-base/tuition/20250330205539_apply_now_doctoral_admission_requirements.md'}, page_content='# Doctoral Admission Requirements - USIU-Africa URL: https://www.usiu.ac.ke/apply-now/doctoral-admission-requirements/'), Document(metadata={'doc_type': 'student_support', 'source': 'usiu-knowledge-base/student_support/20250330045635_apply_now_doctoral_admission_requirements.md'}, page_content='# Doctoral Admission Requirements - USIU-Africa URL: https://www.usiu.ac.ke/apply-now/doctoral-admission-requirements/'), Document(metadata={'doc_type': 'admissions', 'source': 'usiu-knowledge-base/admissions/20250330004404_apply_now_doctoral_admission_requirements.md'}, page_content='# Doctoral Admission Requirements - USIU-Africa URL: https://www.usiu.ac.ke/apply-now/doctoral-admission-requirements/'), Document(metadata={'doc_type': 'events', 'source': 'usiu-knowledge-base/events/20250330133137_apply_now_home.md'}, page_content='# USIU-Africa URL: https://www.usiu.ac.ke/apply-now/home/'), Document(metadata={'doc_type': 'resources', 'source': 'usiu-knowledge-base/resources/20250330124605_apply_now_home.md'}, page_content='# USIU-Africa URL: https://www.usiu.ac.ke/apply-now/home/'), Document(metadata={'doc_type': 'scholarships', 'source': 'usiu-knowledge-base/scholarships/20250331003106_apply_now_home.md'}, page_content='# USIU-Africa URL: https://www.usiu.ac.ke/apply-now/home/')]\n",
      "Retrieved Documents: 10\n",
      "Retrieved Document Content:\n",
      "# Admission Requirements - USIU-Africa URL: https://www.usiu.ac.ke/apply-now/admission-requirements/\n",
      "--------------------------------------------------\n",
      "Retrieved Document Content:\n",
      "# Admission Requirements - USIU-Africa URL: https://www.usiu.ac.ke/apply-now/admission-requirements/\n",
      "--------------------------------------------------\n",
      "Retrieved Document Content:\n",
      "# Admission Requirements - USIU-Africa URL: https://www.usiu.ac.ke/apply-now/admission-requirements/\n",
      "--------------------------------------------------\n",
      "Retrieved Document Content:\n",
      "# Admission Requirements - USIU-Africa URL: https://www.usiu.ac.ke/apply-now/admission-requirements/\n",
      "--------------------------------------------------\n",
      "Retrieved Document Content:\n",
      "# Doctoral Admission Requirements - USIU-Africa URL: https://www.usiu.ac.ke/apply-now/doctoral-admission-requirements/\n",
      "--------------------------------------------------\n",
      "Retrieved Document Content:\n",
      "# Doctoral Admission Requirements - USIU-Africa URL: https://www.usiu.ac.ke/apply-now/doctoral-admission-requirements/\n",
      "--------------------------------------------------\n",
      "Retrieved Document Content:\n",
      "# Doctoral Admission Requirements - USIU-Africa URL: https://www.usiu.ac.ke/apply-now/doctoral-admission-requirements/\n",
      "--------------------------------------------------\n",
      "Retrieved Document Content:\n",
      "# USIU-Africa URL: https://www.usiu.ac.ke/apply-now/home/\n",
      "--------------------------------------------------\n",
      "Retrieved Document Content:\n",
      "# USIU-Africa URL: https://www.usiu.ac.ke/apply-now/home/\n",
      "--------------------------------------------------\n",
      "Retrieved Document Content:\n",
      "# USIU-Africa URL: https://www.usiu.ac.ke/apply-now/home/\n",
      "--------------------------------------------------\n"
     ]
    }
   ],
   "source": [
    "# Put the chunks of data into a Vector Store that associates a Vector Embedding with each chunk\n",
    "# Chroma is a popular open source Vector Database based on SQLLite\n",
    "\n",
    "# If you would rather use the free Vector Embeddings from HuggingFace sentence-transformers\n",
    "# Then replace embeddings = OpenAIEmbeddings()\n",
    "# with:\n",
    "# from langchain.embeddings import HuggingFaceEmbeddings\n",
    "# embeddings = HuggingFaceEmbeddings(model_name=\"sentence-transformers/all-MiniLM-L6-v2\")\n",
    "\n",
    "embeddings = OpenAIEmbeddings()\n",
    "\n",
    "db_name = \"./vector_services/usiu_vector_db\"\n",
    "\n",
    "from langchain.vectorstores import Chroma\n",
    "\n",
    "# Retrieve a document using the VectorStore\n",
    "vectorstore = Chroma(persist_directory=db_name, embedding_function=embeddings)\n",
    "\n",
    "# Example query\n",
    "query = \"How do I get admitted at USIU-Africa?\"\n",
    "\n",
    "# Perform a similarity search to find the most relevant documents\n",
    "docs = vectorstore.similarity_search(query, k=10)\n",
    "print(docs)\n",
    "\n",
    "print(f\"Retrieved Documents: {len(docs)}\")\n",
    "# Print the retrieved document contents.\n",
    "for doc in docs:\n",
    "    print(\"Retrieved Document Content:\")\n",
    "    print(doc.page_content)\n",
    "    print(\"-\" * 50)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from configs.config import GPT4O_MODEL as MODEL\n",
    "\n",
    "\n",
    "# create a new Chat with OpenAI\n",
    "llm = ChatOpenAI(temperature=0.7, model_name=MODEL)\n",
    "\n",
    "# Alternative - if you'd like to use Ollama locally, uncomment this line instead\n",
    "# llm = ChatOpenAI(temperature=0.7, model_name='llama3.2', base_url='http://localhost:11434/v1', api_key='ollama')\n",
    "\n",
    "# set up the conversation memory for the chat\n",
    "memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)\n",
    "\n",
    "# the retriever is an abstraction over the VectorStore that will be used during RAG\n",
    "retriever = vectorstore.as_retriever()\n",
    "\n",
    "# putting it together: set up the conversation chain with the GPT 3.5 LLM, the vector store and memory\n",
    "conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "result = conversation_chain.invoke({\"question\": query})\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# set up a new conversation memory for the chat\n",
    "memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)\n",
    "\n",
    "# putting it together: set up the conversation chain with the GPT 4o-mini LLM, the vector store and memory\n",
    "conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Wrapping that in a function\n",
    "\n",
    "def chat(question, history):\n",
    "    result = conversation_chain.invoke({\"question\": question})\n",
    "    return result[\"answer\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/var/folders/x4/dd2xz8_d4fjbb7kzdq5sp8_40000gn/T/ipykernel_56308/3678441278.py:129: UserWarning: You have not specified a value for the `type` parameter. Defaulting to the 'tuples' format for chatbot messages, but this is deprecated and will be removed in a future version of Gradio. Please set type='messages' instead, which uses openai-style dictionaries with 'role' and 'content' keys.\n",
      "  chatbot = gr.Chatbot(\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Loaded vector store with 0 documents from './usiu_vector_db'.\n",
      "* Running on local URL:  http://127.0.0.1:7881\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7881/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import gradio as gr\n",
    "import os\n",
    "import time\n",
    "import openai  # if you plan to use it for API calls\n",
    "\n",
    "# ---------------------------\n",
    "# Helper Functions\n",
    "# ---------------------------\n",
    "\n",
    "def read_file(file_obj):\n",
    "    \"\"\"\n",
    "    Reads and decodes the content of an uploaded file.\n",
    "    \"\"\"\n",
    "    file_obj.seek(0)\n",
    "    content = file_obj.read()\n",
    "    # Ensure the content is a string.\n",
    "    return content.decode(\"utf-8\") if isinstance(content, bytes) else content\n",
    "\n",
    "# Dummy Global Retriever setup for RAG integration.\n",
    "# Replace or modify this section with your actual vectorstore and retriever.\n",
    "try:\n",
    "    from vector_services.data_curator import DataCurator\n",
    "    curator = DataCurator(knowledge_base_dir=\"../usiu-knowledge-base\")\n",
    "    curator.load_vectorstore()\n",
    "    GLOBAL_RETRIEVER = curator.get_retriever()\n",
    "except Exception as e:\n",
    "    GLOBAL_RETRIEVER = None\n",
    "\n",
    "def process_chat(user_message, chat_history, file):\n",
    "    \"\"\"\n",
    "    Processes the user input and file upload:\n",
    "      - If no message is provided but a file is uploaded, the filename (and its content) is used.\n",
    "      - Inserts a header for a new conversation.\n",
    "      - Optionally queries a retriever for additional context (RAG style).\n",
    "      - For demonstration purposes, echoes back the user message.\n",
    "    \n",
    "    Returns:\n",
    "      A tuple (chatbot_history, state_history) so that both the Chatbot display and the internal state are updated.\n",
    "    \"\"\"\n",
    "    # Handle the file case when there is no text input.\n",
    "    if not user_message.strip() and file is not None:\n",
    "        user_message = f\"Uploaded file: {os.path.basename(file.name)}\"\n",
    "        try:\n",
    "            file_content = read_file(file)\n",
    "        except Exception as e:\n",
    "            chat_history.append((\"Error\", f\"Error reading file: {str(e)}\"))\n",
    "            return chat_history, chat_history\n",
    "        # Append file content as additional context.\n",
    "        user_message += f\"\\n\\n(File Content): {file_content}\"\n",
    "    elif not user_message.strip():\n",
    "        # If no text nor file provided, do nothing.\n",
    "        return chat_history, chat_history\n",
    "\n",
    "    # Add a header if this is the start of a new conversation.\n",
    "    if not chat_history:\n",
    "        date_str = time.strftime(\"%Y-%m-%d %H:%M\", time.localtime())\n",
    "        chat_history.append((\"System\", f\"Conversation started on {date_str}\"))\n",
    "\n",
    "    # Append the user's message.\n",
    "    chat_history.append((\"User\", user_message))\n",
    "\n",
    "    # --- RAG (Retrieval-Augmented Generation) Integration ---\n",
    "    if \"GLOBAL_RETRIEVER\" in globals() and GLOBAL_RETRIEVER is not None:\n",
    "        try:\n",
    "            docs = GLOBAL_RETRIEVER.get_relevant_documents(user_message)\n",
    "            if docs:\n",
    "                # Concatenate retrieved document content as additional context.\n",
    "                context = \"\\n\\n\".join(doc.page_content for doc in docs)\n",
    "                chat_history.append((\"System\", f\"Additional Context:\\n{context}\"))\n",
    "        except Exception as e:\n",
    "            print(\"RAG retrieval failed:\", e)\n",
    "\n",
    "    # --- Chat API Call (Dummy Response) ---\n",
    "    # Here you would normally call your ChatCompletion (or Claude) API with streaming.\n",
    "    # For demo purposes, we simply echo the user message.\n",
    "    response = \"Echo: \" + user_message\n",
    "    chat_history.append((\"Bot\", response))\n",
    "    \n",
    "    # Return the updated chat history for both the Chatbot display and internal state.\n",
    "    return chat_history, chat_history\n",
    "\n",
    "def reset_chat():\n",
    "    \"\"\"\n",
    "    Resets the chat history.\n",
    "    \"\"\"\n",
    "    return []\n",
    "\n",
    "# ---------------------------\n",
    "# Custom CSS & JavaScript\n",
    "# ---------------------------\n",
    "\n",
    "css = \"\"\"\n",
    "/* Custom CSS for Chatbot styling */\n",
    "#chatbot {\n",
    "    border: 2px solid #4CAF50;\n",
    "    border-radius: 5px;\n",
    "    padding: 10px;\n",
    "    margin-bottom: 10px;\n",
    "}\n",
    "\"\"\"\n",
    "\n",
    "# Custom JavaScript to disable the send button when there is no text.\n",
    "custom_js = \"\"\"\n",
    "<script>\n",
    "window.addEventListener(\"load\", function() {\n",
    "    const sendBtn = document.getElementById(\"send_btn\");\n",
    "    const textBox = document.getElementById(\"chat_input\");\n",
    "    function toggleSend() {\n",
    "        if(textBox.value.trim() === \"\"){\n",
    "            sendBtn.disabled = true;\n",
    "        } else {\n",
    "            sendBtn.disabled = false;\n",
    "        }\n",
    "    }\n",
    "    textBox.addEventListener(\"input\", toggleSend);\n",
    "    toggleSend();\n",
    "});\n",
    "</script>\n",
    "\"\"\"\n",
    "\n",
    "# ---------------------------\n",
    "# Gradio UI using Blocks\n",
    "# ---------------------------\n",
    "\n",
    "with gr.Blocks(css=css, title=\"Gradio Chat Interface Example\") as demo:\n",
    "    gr.Markdown(\"<h1 style='text-align: center;'>Chat Interface Example</h1>\")\n",
    "    \n",
    "    # Chat display using Chatbot component\n",
    "    chatbot = gr.Chatbot(\n",
    "        elem_id=\"chatbot\",\n",
    "        show_copy_all_button=True,\n",
    "        show_copy_button=True,\n",
    "        show_share_button=True,\n",
    "        allow_file_downloads=True,\n",
    "        allow_tags=True,\n",
    "        layout=\"panel\"\n",
    "    )\n",
    "    # This state holds the conversation history as a list of (role, message) tuples.\n",
    "    state = gr.State([])\n",
    "\n",
    "    with gr.Row():\n",
    "        with gr.Column(scale=8):\n",
    "            chat_input = gr.Textbox(\n",
    "                placeholder=\"Type your message here...\",\n",
    "                label=\"Your Message\",\n",
    "                elem_id=\"chat_input\"\n",
    "            )\n",
    "        with gr.Column(scale=2):\n",
    "            file_input = gr.File(label=\"Upload a file (optional)\")\n",
    "        with gr.Column(scale=2):\n",
    "            # The send button includes a chat icon (emoji).\n",
    "            send_btn = gr.Button(\"Send 💬\", elem_id=\"send_btn\", variant=\"primary\")\n",
    "    \n",
    "    with gr.Row():\n",
    "        new_chat_btn = gr.Button(\"New Chat\", variant=\"secondary\")\n",
    "    \n",
    "    # When the send button is clicked, process the message (and file if any) and update both the Chatbot and state.\n",
    "    send_btn.click(\n",
    "        fn=process_chat,\n",
    "        inputs=[chat_input, state, file_input],\n",
    "        outputs=[chatbot, state]\n",
    "    )\n",
    "    # Reset the conversation history when \"New Chat\" is clicked.\n",
    "    new_chat_btn.click(\n",
    "        fn=reset_chat,\n",
    "        inputs=[],\n",
    "        outputs=state\n",
    "    )\n",
    "    \n",
    "    # Inject custom JavaScript.\n",
    "    gr.HTML(custom_js)\n",
    "\n",
    "# Launch the interface.\n",
    "demo.launch()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "ename": "ImportError",
     "evalue": "cannot import name 'HumeVoiceClient' from 'hume' (/opt/anaconda3/envs/llms/lib/python3.11/site-packages/hume/__init__.py)",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mImportError\u001b[0m                               Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[1], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01mhume\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m HumeVoiceClient, MicrophoneInterface\n\u001b[1;32m      2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01mdotenv\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m load_dotenv\n\u001b[1;32m      3\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01mos\u001b[39;00m\n",
      "\u001b[0;31mImportError\u001b[0m: cannot import name 'HumeVoiceClient' from 'hume' (/opt/anaconda3/envs/llms/lib/python3.11/site-packages/hume/__init__.py)"
     ]
    }
   ],
   "source": [
    "from hume import HumeVoiceClient, MicrophoneInterface\n",
    "from dotenv import load_dotenv\n",
    "import os\n",
    "\n",
    "\n",
    "load_dotenv()\n",
    "# avoid hard coding your API key, retrieve from environment variables\n",
    "HUME_API_KEY = os.getenv(\"HUMEAI_API_KEY\")\n",
    "HUME_CONFIG_ID = os.getenv(\"HUMEAI_CONFIG_ID\")\n",
    "# Connect and authenticate with Hume\n",
    "client = HumeVoiceClient(HUME_API_KEY)\n",
    "# establish a connection with EVI with your configuration by passing\n",
    "# the config_id as an argument to the connect method\n",
    "async with client.connect(config_id=HUME_CONFIG_ID) as socket:\n",
    "  await MicrophoneInterface.start(socket)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import asyncio\n",
    "import base64\n",
    "import datetime\n",
    "import os\n",
    "from dotenv import load_dotenv\n",
    "from hume.client import AsyncHumeClient\n",
    "from hume.empathic_voice.chat.socket_client import ChatConnectOptions, ChatWebsocketConnection\n",
    "from hume.empathic_voice.chat.types import SubscribeEvent\n",
    "from hume.empathic_voice.types import UserInput\n",
    "from hume.core.api_error import ApiError\n",
    "from hume import MicrophoneInterface, Stream"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "class WebSocketHandler:\n",
    "  \"\"\"Interface for containing the EVI WebSocket and associated socket handling behavior.\"\"\"\n",
    "\n",
    "  def __init__(self):\n",
    "    \"\"\"Construct the WebSocketHandler, initially assigning the socket to None and the byte stream to a new Stream object.\"\"\"\n",
    "    self.socket = None\n",
    "    self.byte_strs = Stream.new()\n",
    "\n",
    "  def set_socket(self, socket: ChatWebsocketConnection):\n",
    "    \"\"\"Set the socket.\"\"\"\n",
    "    self.socket = socket\n",
    "\n",
    "  async def on_open(self):\n",
    "    \"\"\"Logic invoked when the WebSocket connection is opened.\"\"\"\n",
    "    print(\"WebSocket connection opened.\")\n",
    "\n",
    "  async def on_message(self, message: SubscribeEvent):\n",
    "    \"\"\"Callback function to handle a WebSocket message event.\n",
    "    \n",
    "    This asynchronous method decodes the message, determines its type, and \n",
    "    handles it accordingly. Depending on the type of message, it \n",
    "    might log metadata, handle user or assistant messages, process\n",
    "    audio data, raise an error if the message type is \"error\", and more.\n",
    "\n",
    "    See the full list of \"Receive\" messages in the API Reference.\n",
    "    \"\"\"\n",
    "\n",
    "    if message.type == \"chat_metadata\":\n",
    "      chat_id = message.chat_id\n",
    "      chat_group_id = message.chat_group_id\n",
    "      # ...\n",
    "    elif message.type in [\"user_message\", \"assistant_message\"]:\n",
    "      role = message.message.role.upper()\n",
    "      message_text = message.message.content\n",
    "      # ...\n",
    "    elif message.type == \"audio_output\":\n",
    "      message_str: str = message.data\n",
    "      message_bytes = base64.b64decode(message_str.encode(\"utf-8\"))\n",
    "      await self.byte_strs.put(message_bytes)\n",
    "      return\n",
    "    elif message.type == \"error\":\n",
    "      error_message = message.message\n",
    "      error_code = message.code\n",
    "      raise ApiError(f\"Error ({error_code}): {error_message}\")\n",
    "    \n",
    "    # Print timestamp and message\n",
    "    # ...\n",
    "      \n",
    "  async def on_close(self):\n",
    "    \"\"\"Logic invoked when the WebSocket connection is closed.\"\"\"\n",
    "    print(\"WebSocket connection closed.\")\n",
    "\n",
    "  async def on_error(self, error):\n",
    "    \"\"\"Logic invoked when an error occurs in the WebSocket connection.\"\"\"\n",
    "    print(f\"Error: {error}\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "async def main() -> None:\n",
    "  # Retrieve any environment variables stored in the .env file\n",
    "  load_dotenv()\n",
    "\n",
    "  # Retrieve the API key, Secret key, and EVI config id from the environment variables\n",
    "  HUMEAI_API_KEY = os.getenv(\"HUMEAI_API_KEY\")\n",
    "  HUMEAI_SECRET_KEY = os.getenv(\"HUMEAI_SECRET_KEY\")\n",
    "  HUMEAI_CONFIG_ID = os.getenv(\"HUMEAI_CONFIG_ID\")\n",
    "\n",
    "  # Initialize the asynchronous client, authenticating with your API key\n",
    "  client = AsyncHumeClient(api_key=HUME_API_KEY)\n",
    "\n",
    "  # Define options for the WebSocket connection, such as an EVI config id and a secret key for token authentication\n",
    "  options = ChatConnectOptions(config_id=HUME_CONFIG_ID, secret_key=HUME_SECRET_KEY)\n",
    "  \n",
    "  # ...\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "ename": "ModuleNotFoundError",
     "evalue": "No module named 'empathic_client'",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mModuleNotFoundError\u001b[0m                       Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[8], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01mempathic_client\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m EmpathicClient\n\u001b[1;32m      2\u001b[0m \u001b[38;5;66;03m# from empathic import EmpathicClient\u001b[39;00m\n\u001b[1;32m      5\u001b[0m client \u001b[38;5;241m=\u001b[39m EmpathicClient(api_key\u001b[38;5;241m=\u001b[39mHUME_API_KEY)\n",
      "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'empathic_client'"
     ]
    }
   ],
   "source": [
    "from empathic_client import EmpathicClient\n",
    "# from empathic import EmpathicClient\n",
    "\n",
    "\n",
    "client = EmpathicClient(api_key=HUME_API_KEY)\n",
    "\n",
    "async def main() -> None:\n",
    "  \n",
    "# Retrieve the API key, Secret key, and EVI config id from the environment variables\n",
    "  HUMEAI_API_KEY = os.getenv(\"HUMEAI_API_KEY\")\n",
    "  HUMEAI_SECRET_KEY = os.getenv(\"HUMEAI_SECRET_KEY\")\n",
    "  HUMEAI_CONFIG_ID = os.getenv(\"HUMEAI_CONFIG_ID\")\n",
    "\n",
    "\n",
    "  # Define options for the WebSocket connection, such as an EVI config id and a secret key for token authentication\n",
    "  options = ChatConnectOptions(config_id=HUME_CONFIG_ID, secret_key=HUMEAI_SECRET_KEY)\n",
    "\n",
    "  # Instantiate the WebSocketHandler\n",
    "  websocket_handler = WebSocketHandler()\n",
    "\n",
    "  # Open the WebSocket connection with the configuration options and the handler's functions\n",
    "async with client.empathic_voice.chat.connect_with_callbacks(\n",
    "    options=options,\n",
    "    on_open=websocket_handler.on_open,\n",
    "    on_message=websocket_handler.on_message,\n",
    "    on_close=websocket_handler.on_close,\n",
    "    on_error=websocket_handler.on_error\n",
    ") as socket:\n",
    "    \n",
    "    # Set the socket instance in the handler\n",
    "    websocket_handler.set_socket(socket)\n",
    "    # ...\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "async def main() -> None:\n",
    "  # Open the WebSocket connection with the configuration options and the handler's functions\n",
    "  async with client.empathic_voice.chat.connect_with_callbacks(...) as socket:\n",
    "    # Set the socket instance in the handler\n",
    "    websocket_handler.set_socket(socket)\n",
    "\n",
    "    # Create an asynchronous task to continuously detect and process input from the microphone, as well as play audio\n",
    "    microphone_task = asyncio.create_task(\n",
    "      MicrophoneInterface.start(\n",
    "        socket,\n",
    "        byte_stream=websocket_handler.byte_strs\n",
    "      )\n",
    "    )\n",
    "    \n",
    "    # Await the microphone task\n",
    "    await microphone_task\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "ename": "NameError",
     "evalue": "name 'websocket_handler' is not defined",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[7], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mwebsocket_handler\u001b[49m\u001b[38;5;241m.\u001b[39mset_socket(socket)\n\u001b[1;32m      3\u001b[0m \u001b[38;5;66;03m# Specify device 4 in MicrophoneInterface\u001b[39;00m\n\u001b[1;32m      4\u001b[0m MicrophoneInterface\u001b[38;5;241m.\u001b[39mstart(\n\u001b[1;32m      5\u001b[0m   socket,\n\u001b[1;32m      6\u001b[0m \u001b[38;5;66;03m#   device=4,\u001b[39;00m\n\u001b[1;32m      7\u001b[0m   allow_user_interrupt\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m      8\u001b[0m   byte_stream\u001b[38;5;241m=\u001b[39mwebsocket_handler\u001b[38;5;241m.\u001b[39mbyte_strs\n\u001b[1;32m      9\u001b[0m )\n",
      "\u001b[0;31mNameError\u001b[0m: name 'websocket_handler' is not defined"
     ]
    }
   ],
   "source": [
    "websocket_handler.set_socket(socket)\n",
    "\n",
    "# Specify device 4 in MicrophoneInterface\n",
    "MicrophoneInterface.start(\n",
    "  socket,\n",
    "#   device=4,\n",
    "  allow_user_interrupt=True,\n",
    "  byte_stream=websocket_handler.byte_strs\n",
    ")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Retrieve any environment variables stored in the .env file\n",
    "load_dotenv()\n",
    "\n",
    "# Retrieve the API key, Secret key, and EVI config id from the environment variables\n",
    "HUMEAI_API_KEY = os.getenv(\"HUMEAI_API_KEY\")\n",
    "HUMEAI_SECRET_KEY = os.getenv(\"HUMEAI_SECRET_KEY\")\n",
    "HUMEAI_CONFIG_ID = os.getenv(\"HUMEAI_CONFIG_ID\")\n",
    "\n",
    "import asyncio\n",
    "\n",
    "from hume.client import AsyncHumeClient\n",
    "\n",
    "client = AsyncHumeClient(api_key=HUMEAI_API_KEY)\n",
    "\n",
    "async def main() -> None:\n",
    "    await client.empathic_voice.configs.list_configs()\n",
    "\n",
    "import nest_asyncio\n",
    "nest_asyncio.apply()\n",
    "\n",
    "asyncio.run(main())\n",
    "# await main()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/opt/anaconda3/envs/llms/lib/python3.11/site-packages/pygments/regexopt.py:77: RuntimeWarning: coroutine 'main' was never awaited\n",
      "  '|'.join(regex_opt_inner(list(group[1]), '')\n",
      "RuntimeWarning: Enable tracemalloc to get the object allocation traceback\n"
     ]
    },
    {
     "ename": "ImportError",
     "evalue": "cannot import name 'HumeVoiceClient' from 'hume' (/opt/anaconda3/envs/llms/lib/python3.11/site-packages/hume/__init__.py)",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mImportError\u001b[0m                               Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[14], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01mhume\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m HumeVoiceClient, MicrophoneInterface\n\u001b[1;32m      3\u001b[0m \u001b[38;5;66;03m# Connect and authenticate with Hume\u001b[39;00m\n\u001b[1;32m      4\u001b[0m client \u001b[38;5;241m=\u001b[39m HumeVoiceClient(HUMEAI_API_KEY)\n",
      "\u001b[0;31mImportError\u001b[0m: cannot import name 'HumeVoiceClient' from 'hume' (/opt/anaconda3/envs/llms/lib/python3.11/site-packages/hume/__init__.py)"
     ]
    }
   ],
   "source": [
    "from hume import HumeVoiceClient, MicrophoneInterface\n",
    "\n",
    "# Connect and authenticate with Hume\n",
    "client = HumeVoiceClient(HUMEAI_API_KEY)\n",
    "# establish a connection with EVI with your configuration by passing\n",
    "# the config_id as an argument to the connect method\n",
    "async with client.connect(config_id=HUMEAI_CONFIG_ID) as socket:\n",
    "  await MicrophoneInterface.start(socket)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [],
   "source": [
    "import asyncio\n",
    "import base64\n",
    "import datetime\n",
    "import os\n",
    "from dotenv import load_dotenv\n",
    "import nest_asyncio\n",
    "from hume import MicrophoneInterface\n",
    "from hume.client import AsyncHumeClient\n",
    "from hume.empathic_voice.chat.socket_client import ChatConnectOptions, ChatWebsocketConnection\n",
    "from hume.empathic_voice.types import UserInput\n",
    "from hume.core.api_error import ApiError\n",
    "\n",
    "# Apply nest_asyncio to make asyncio work in Jupyter\n",
    "nest_asyncio.apply()\n",
    "\n",
    "class WebSocketHandler:\n",
    "    \"\"\"Handles WebSocket events for EVI chat.\"\"\"\n",
    "    \n",
    "    def __init__(self):\n",
    "        \"\"\"Initialize the WebSocket handler.\"\"\"\n",
    "        self.socket = None\n",
    "        self.byte_strs = asyncio.Queue()\n",
    "        self.is_speaking = False\n",
    "        self.transcript = \"\"\n",
    "        self.conversation_history = []\n",
    "        self.audio_playback_task = None\n",
    "        \n",
    "    def set_socket(self, socket: ChatWebsocketConnection):\n",
    "        \"\"\"Set the WebSocket connection.\"\"\"\n",
    "        self.socket = socket\n",
    "        \n",
    "    async def on_open(self):\n",
    "        \"\"\"Handle WebSocket connection open event.\"\"\"\n",
    "        print(\"WebSocket connection opened.\")\n",
    "        # Start audio playback task\n",
    "        self.audio_playback_task = asyncio.create_task(self.handle_audio_playback())\n",
    "        \n",
    "    async def handle_audio_playback(self):\n",
    "        \"\"\"Process audio from the queue and play it.\"\"\"\n",
    "        try:\n",
    "            while True:\n",
    "                # Get audio bytes from the queue\n",
    "                audio_bytes = await self.byte_strs.get()\n",
    "                # Play the audio (simplified for example)\n",
    "                print(\"Playing audio chunk...\")\n",
    "                # In a real implementation, you would use a library like sounddevice to play the audio\n",
    "                \n",
    "                # Mark task as done\n",
    "                self.byte_strs.task_done()\n",
    "        except Exception as e:\n",
    "            print(f\"Audio playback error: {e}\")\n",
    "        \n",
    "    async def on_message(self, message):\n",
    "        \"\"\"\n",
    "        Handle incoming WebSocket messages.\n",
    "        \n",
    "        Args:\n",
    "            message: The WebSocket message data.\n",
    "        \"\"\"\n",
    "        try:\n",
    "            # Debug the message type\n",
    "            print(f\"Received message type: {type(message).__name__}\")\n",
    "            \n",
    "            # Handle different message types based on their attributes\n",
    "            if hasattr(message, 'transcript') and message.transcript:\n",
    "                self.transcript = message.transcript\n",
    "                print(f\"Transcript: {self.transcript}\")\n",
    "                \n",
    "            elif hasattr(message, 'audio'):\n",
    "                if not self.is_speaking and hasattr(message, 'text'):\n",
    "                    self.is_speaking = True\n",
    "                    print(f\"Assistant: {message.text}\")\n",
    "                    print(\"Assistant is speaking...\")\n",
    "                \n",
    "                # Queue the audio bytes for playback\n",
    "                if message.audio:\n",
    "                    await self.byte_strs.put(message.audio)\n",
    "                    \n",
    "            elif hasattr(message, 'speaking_complete') and message.speaking_complete:\n",
    "                self.is_speaking = False\n",
    "                print(\"Assistant finished speaking.\")\n",
    "                \n",
    "                # Add the completed exchange to conversation history\n",
    "                if hasattr(message, 'text') and self.transcript:\n",
    "                    self.conversation_history.append({\"user\": self.transcript, \"assistant\": message.text})\n",
    "                    self.transcript = \"\"\n",
    "                    \n",
    "            elif hasattr(message, 'error_message'):\n",
    "                print(f\"Error: {message.error_message}\")\n",
    "                \n",
    "        except Exception as e:\n",
    "            print(f\"Message handling error: {e}\")\n",
    "            \n",
    "    async def on_close(self):\n",
    "        \"\"\"Handle WebSocket connection close event.\"\"\"\n",
    "        print(\"WebSocket connection closed.\")\n",
    "        if self.audio_playback_task:\n",
    "            self.audio_playback_task.cancel()\n",
    "            try:\n",
    "                await self.audio_playback_task\n",
    "            except asyncio.CancelledError:\n",
    "                pass\n",
    "        \n",
    "    async def on_error(self, error: Exception):\n",
    "        \"\"\"\n",
    "        Handle WebSocket error event.\n",
    "        \n",
    "        Args:\n",
    "            error: The error that occurred.\n",
    "        \"\"\"\n",
    "        print(f\"WebSocket error: {error}\")\n",
    "        \n",
    "    async def send_text_message(self, text: str):\n",
    "        \"\"\"\n",
    "        Send a text message to EVI.\n",
    "        \n",
    "        Args:\n",
    "            text: The text to send.\n",
    "        \"\"\"\n",
    "        if self.socket:\n",
    "            user_input = UserInput(text=text)\n",
    "            await self.socket.send_user_input(user_input)\n",
    "            print(f\"Sent text message: {text}\")\n",
    "        else:\n",
    "            print(\"WebSocket not connected.\")\n",
    "\n",
    "async def main():\n",
    "    \"\"\"Main function to run the EVI chat application.\"\"\"\n",
    "    # Retrieve any environment variables stored in the .env file\n",
    "    load_dotenv()\n",
    "    \n",
    "    # Retrieve the API credentials from environment variables\n",
    "    HUME_API_KEY = os.getenv(\"HUMEAI_API_KEY\")\n",
    "    HUME_SECRET_KEY = os.getenv(\"HUMEAI_SECRET_KEY\")\n",
    "    HUME_CONFIG_ID = os.getenv(\"HUMEAI_CONFIG_ID\")\n",
    "    \n",
    "    # Validate credentials are available\n",
    "    if not all([HUME_API_KEY, HUME_SECRET_KEY, HUME_CONFIG_ID]):\n",
    "        raise ValueError(\"Missing required environment variables. Please set HUME_API_KEY, HUME_SECRET_KEY, and HUME_CONFIG_ID.\")\n",
    "    \n",
    "    # Initialize the asynchronous client\n",
    "    client = AsyncHumeClient(api_key=HUME_API_KEY)\n",
    "    \n",
    "    # Define options for the WebSocket connection\n",
    "    options = ChatConnectOptions(config_id=HUME_CONFIG_ID, secret_key=HUME_SECRET_KEY)\n",
    "    \n",
    "    # Instantiate the WebSocketHandler\n",
    "    websocket_handler = WebSocketHandler()\n",
    "    \n",
    "    try:\n",
    "        # Open the WebSocket connection with the handler's callbacks\n",
    "        async with client.empathic_voice.chat.connect_with_callbacks(\n",
    "            options=options,\n",
    "            on_open=websocket_handler.on_open,\n",
    "            on_message=websocket_handler.on_message,\n",
    "            on_close=websocket_handler.on_close,\n",
    "            on_error=websocket_handler.on_error\n",
    "        ) as socket:\n",
    "            # Set the socket instance in the handler\n",
    "            websocket_handler.set_socket(socket)\n",
    "            \n",
    "            # Create an asynchronous task for microphone handling\n",
    "            # Check the latest implementation of MicrophoneInterface\n",
    "            try:\n",
    "                print(\"Setting up microphone interface...\")\n",
    "                # Try using just the socket\n",
    "                mic_interface = MicrophoneInterface(socket)\n",
    "                microphone_task = asyncio.create_task(mic_interface.start())\n",
    "                print(\"Microphone interface started successfully\")\n",
    "            except TypeError as e:\n",
    "                print(f\"MicrophoneInterface error: {e}\")\n",
    "                # Try the alternative approach with explicit byte_stream\n",
    "                print(\"Trying alternative microphone setup...\")\n",
    "                microphone_task = asyncio.create_task(\n",
    "                    MicrophoneInterface.start(\n",
    "                        socket, \n",
    "                        byte_stream=websocket_handler.byte_strs\n",
    "                    )\n",
    "                )\n",
    "            \n",
    "            # For testing, send an initial text message\n",
    "            await websocket_handler.send_text_message(\"Hello, I'm testing this voice interface.\")\n",
    "            \n",
    "            # Wait for user input to exit\n",
    "            try:\n",
    "                print(\"Press Ctrl+C to exit...\")\n",
    "                await asyncio.Future()  # Run indefinitely until interrupted\n",
    "            except asyncio.CancelledError:\n",
    "                pass\n",
    "            finally:\n",
    "                # Cancel the microphone task\n",
    "                microphone_task.cancel()\n",
    "                try:\n",
    "                    await microphone_task\n",
    "                except asyncio.CancelledError:\n",
    "                    pass\n",
    "            \n",
    "    except ApiError as e:\n",
    "        print(f\"API Error: {e}\")\n",
    "    except Exception as e:\n",
    "        print(f\"Unexpected error: {e}\")\n",
    "\n",
    "# Let's create a simpler, text-only version to test the basic functionality\n",
    "async def text_only_chat():\n",
    "    \"\"\"Run EVI in text-only mode for testing.\"\"\"\n",
    "    load_dotenv()\n",
    "    \n",
    "    HUME_API_KEY = os.getenv(\"HUME_API_KEY\")\n",
    "    HUME_SECRET_KEY = os.getenv(\"HUME_SECRET_KEY\")\n",
    "    HUME_CONFIG_ID = os.getenv(\"HUME_CONFIG_ID\")\n",
    "    \n",
    "    if not all([HUME_API_KEY, HUME_SECRET_KEY, HUME_CONFIG_ID]):\n",
    "        raise ValueError(\"Missing required environment variables\")\n",
    "    \n",
    "    client = AsyncHumeClient(api_key=HUME_API_KEY)\n",
    "    options = ChatConnectOptions(config_id=HUME_CONFIG_ID, secret_key=HUME_SECRET_KEY)\n",
    "    websocket_handler = WebSocketHandler()\n",
    "    \n",
    "    async with client.empathic_voice.chat.connect_with_callbacks(\n",
    "        options=options,\n",
    "        on_open=websocket_handler.on_open,\n",
    "        on_message=websocket_handler.on_message,\n",
    "        on_close=websocket_handler.on_close,\n",
    "        on_error=websocket_handler.on_error\n",
    "    ) as socket:\n",
    "        websocket_handler.set_socket(socket)\n",
    "        \n",
    "        # Simulate conversation with text input\n",
    "        messages = [\n",
    "            \"Hello, how are you today?\",\n",
    "            \"Tell me about yourself\",\n",
    "            \"What can you help me with?\"\n",
    "        ]\n",
    "        \n",
    "        for msg in messages:\n",
    "            print(f\"\\nSending message: {msg}\")\n",
    "            await websocket_handler.send_text_message(msg)\n",
    "            # Wait for response processing\n",
    "            await asyncio.sleep(5)\n",
    "        \n",
    "        print(\"\\nText-only chat completed.\")\n",
    "\n",
    "def run_evi_chat():\n",
    "    \"\"\"Run the EVI chat application.\"\"\"\n",
    "    try:\n",
    "        asyncio.run(main())\n",
    "    except KeyboardInterrupt:\n",
    "        print(\"Application terminated by user.\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error running application: {e}\")\n",
    "\n",
    "def run_text_only():\n",
    "    \"\"\"Run text-only chat in Jupyter.\"\"\"\n",
    "    try:\n",
    "        asyncio.run(text_only_chat())\n",
    "    except KeyboardInterrupt:\n",
    "        print(\"Text-only chat terminated by user.\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error running text-only chat: {e}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "WebSocket connection opened.\n",
      "Setting up microphone interface...\n",
      "MicrophoneInterface error: MicrophoneInterface.__init__() takes 1 positional argument but 2 were given\n",
      "Trying alternative microphone setup...\n",
      "Sent text message: Hello, I'm testing this voice interface.\n",
      "Press Ctrl+C to exit...\n",
      "Configuring socket with microphone settings...\n",
      "Microphone connected. Say something!\n",
      "Received message type: ChatMetadata\n",
      "Received message type: UserMessage\n",
      "Received message type: WebSocketError\n",
      "Received message type: AssistantMessage\n",
      "Received message type: AudioOutput\n",
      "Received message type: AudioOutput\n",
      "Received message type: AudioOutput\n",
      "Received message type: AssistantMessage\n",
      "Received message type: AudioOutput\n",
      "Received message type: AudioOutput\n",
      "Received message type: AudioOutput\n",
      "Received message type: AudioOutput\n",
      "Received message type: AssistantEnd\n",
      "Received message type: AssistantEnd\n",
      "WebSocket error: 'async for' requires an object with __aiter__ method, got Queue\n",
      "WebSocket connection closed.\n",
      "Unexpected error: 'async for' requires an object with __aiter__ method, got Queue\n",
      "Application terminated by user.\n"
     ]
    }
   ],
   "source": [
    "# Run the EVI chat application\n",
    "run_evi_chat()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['AsyncHumeClient', 'HumeClient', 'HumeClientEnvironment', 'MicrophoneInterface', 'Stream', '__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', '__version__', 'base_client', 'client', 'core', 'empathic_voice', 'environment', 'expression_measurement', 'tts', 'version']\n"
     ]
    }
   ],
   "source": [
    "import hume\n",
    "print(dir(hume))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_client_wrapper', 'chat', 'chat_groups', 'chats', 'configs', 'custom_voices', 'prompts', 'tools']\n"
     ]
    }
   ],
   "source": [
    "from hume import AsyncHumeClient\n",
    "client = AsyncHumeClient(api_key=\"YOUR_API_KEY\")\n",
    "print(dir(client.empathic_voice))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['DEFAULT_MAX_PAYLOAD_SIZE_BYTES', '__annotations__', '__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_construct_ws_uri', '_fetch_access_token', '_process_connection', '_wrap_on_error', '_wrap_on_message', '_wrap_on_open_close', 'client_wrapper', 'connect', 'connect_with_callbacks']\n"
     ]
    }
   ],
   "source": [
    "print(dir(client.empathic_voice.chat))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "ename": "ApiError",
     "evalue": "status_code: 404, body: {'timestamp': '2025-04-12T06:57:11.572+00:00', 'status': 404, 'error': 'Not Found', 'message': 'Either chat 470a49f6-1dec-4afe-8b61-035d3b2d63b0 does not exist or user (userId=1171ea7d-ebb0-4cf1-ab55-c42e3bfc140e) is not authorized to access it.', 'path': '/chats/470a49f6-1dec-4afe-8b61-035d3b2d63b0/audio'}",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mApiError\u001b[0m                                  Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[13], line 14\u001b[0m\n\u001b[1;32m      9\u001b[0m HUME_CONFIG_ID \u001b[38;5;241m=\u001b[39m os\u001b[38;5;241m.\u001b[39mgetenv(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mHUMEAI_CONFIG_ID\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m     11\u001b[0m client \u001b[38;5;241m=\u001b[39m HumeClient(\n\u001b[1;32m     12\u001b[0m     api_key\u001b[38;5;241m=\u001b[39mHUME_API_KEY,\n\u001b[1;32m     13\u001b[0m )\n\u001b[0;32m---> 14\u001b[0m \u001b[43mclient\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mempathic_voice\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mchats\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_audio\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m     15\u001b[0m \u001b[43m    \u001b[49m\u001b[38;5;28;43mid\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m470a49f6-1dec-4afe-8b61-035d3b2d63b0\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m     16\u001b[0m \u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/opt/anaconda3/envs/llms/lib/python3.11/site-packages/hume/empathic_voice/chats/client.py:287\u001b[0m, in \u001b[0;36mChatsClient.get_audio\u001b[0;34m(self, id, request_options)\u001b[0m\n\u001b[1;32m    285\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m JSONDecodeError:\n\u001b[1;32m    286\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m ApiError(status_code\u001b[38;5;241m=\u001b[39m_response\u001b[38;5;241m.\u001b[39mstatus_code, body\u001b[38;5;241m=\u001b[39m_response\u001b[38;5;241m.\u001b[39mtext)\n\u001b[0;32m--> 287\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m ApiError(status_code\u001b[38;5;241m=\u001b[39m_response\u001b[38;5;241m.\u001b[39mstatus_code, body\u001b[38;5;241m=\u001b[39m_response_json)\n",
      "\u001b[0;31mApiError\u001b[0m: status_code: 404, body: {'timestamp': '2025-04-12T06:57:11.572+00:00', 'status': 404, 'error': 'Not Found', 'message': 'Either chat 470a49f6-1dec-4afe-8b61-035d3b2d63b0 does not exist or user (userId=1171ea7d-ebb0-4cf1-ab55-c42e3bfc140e) is not authorized to access it.', 'path': '/chats/470a49f6-1dec-4afe-8b61-035d3b2d63b0/audio'}"
     ]
    }
   ],
   "source": [
    "from hume import HumeClient\n",
    "from dotenv import load_dotenv\n",
    "import os\n",
    "\n",
    "load_dotenv()\n",
    "    \n",
    "HUME_API_KEY = os.getenv(\"HUMEAI_API_KEY\")\n",
    "HUME_SECRET_KEY = os.getenv(\"HUMEAI_SECRET_KEY\")\n",
    "HUME_CONFIG_ID = os.getenv(\"HUMEAI_CONFIG_ID\")\n",
    "\n",
    "client = HumeClient(\n",
    "    api_key=HUME_API_KEY,\n",
    ")\n",
    "client.empathic_voice.chats.get_audio(\n",
    "    id=\"470a49f6-1dec-4afe-8b61-035d3b2d63b0\",\n",
    ")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "import asyncio\n",
    "\n",
    "from hume.client import AsyncHumeClient\n",
    "\n",
    "client = AsyncHumeClient(api_key=HUME_API_KEY)\n",
    "\n",
    "async def main() -> None:\n",
    "    await client.empathic_voice.configs.list_configs()\n",
    "\n",
    "import nest_asyncio\n",
    "nest_asyncio.apply()\n",
    "\n",
    "asyncio.run(main())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from hume import StreamDataModels\n",
    "\n",
    "client = AsyncHumeClient(api_key=os.getenv(\"HUMEAI_API_KEY\"))\n",
    "\n",
    "async with client.expression_measurement.stream.connect(\n",
    "    options={\"config\": StreamDataModels(...)}\n",
    ") as hume_socket:\n",
    "    print(await hume_socket.get_job_details())"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "llms",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}