File size: 22,185 Bytes
c9bb632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
from typing import Dict, List, Any, Tuple
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import plotly.graph_objects as go
import plotly.express as px
import re
from collections import defaultdict

def strip_formatting(text: str) -> str:
    """Remove markdown, HTML tags, and normalize whitespace/case."""
    # Remove HTML tags
    text = re.sub(r'<[^>]+>', '', text)
    # Remove markdown bold/italic/code/headers/links/images
    text = re.sub(r'\*\*|__|\*|`|#+|!\[[^\]]*\]\([^\)]*\)|\[[^\]]*\]\([^\)]*\)', '', text)
    # Remove extra whitespace and lowercase
    text = re.sub(r'\s+', ' ', text).strip().lower()
    return text

class ConsensusAnalyzer:
    def __init__(self, llm_client=None):
        self.model = SentenceTransformer('all-MiniLM-L6-v2')
        self.llm_client = llm_client # Store the LLM client
        
    def calculate_similarity_matrix(self, responses: List[str]) -> np.ndarray:
        """Calculate semantic similarity between all responses (formatting stripped)."""
        cleaned = [strip_formatting(r) for r in responses]
        embeddings = self.model.encode(cleaned)
        return cosine_similarity(embeddings)

    def calculate_consensus(self, responses: Dict[str, Any]) -> Dict[str, Any]:
        """Calculate consensus metrics from model responses (formatting stripped)."""
        # Extract successful responses
        valid_responses = {
            model: data["response"] 
            for model, data in responses.items() 
            if data["status"] == "success"
        }
        
        if not valid_responses:
            return {
                "consensus_score": 0,
                "error": "No valid responses received"
            }

        # Use cleaned responses for all downstream analysis
        cleaned_responses = {m: strip_formatting(r) for m, r in valid_responses.items()}
        response_texts = list(cleaned_responses.values())
        similarity_matrix = self.calculate_similarity_matrix(list(valid_responses.values()))
        
        # Calculate consensus score (average similarity)
        consensus_score = float(np.mean(similarity_matrix))
        
        # Identify clusters of similar responses
        clusters = self._identify_clusters(similarity_matrix, threshold=0.5)
        
        # Analyze disagreements with enhanced analysis
        disagreements = self._analyze_disagreements_enhanced(cleaned_responses, clusters)
        
        # Extract key topics and themes
        topics = self._extract_topics(cleaned_responses)
        
        # Analyze confidence patterns
        confidence_analysis = self._analyze_confidence_patterns(cleaned_responses, similarity_matrix)
        
        return {
            "consensus_score": consensus_score,
            "clusters": clusters,
            "disagreements": disagreements,
            "similarity_matrix": similarity_matrix.tolist(),
            "topics": topics,
            "confidence_analysis": confidence_analysis
        }

    def _identify_clusters(self, similarity_matrix: np.ndarray, threshold: float) -> List[List[int]]:
        """Identify clusters of similar responses."""
        n = len(similarity_matrix)
        clusters = []
        used = set()
        
        for i in range(n):
            if i in used:
                continue
                
            cluster = [i]
            used.add(i)
            
            for j in range(i + 1, n):
                if j not in used and similarity_matrix[i, j] >= threshold:
                    cluster.append(j)
                    used.add(j)
                    
            clusters.append(cluster)
            
        return clusters

    def _analyze_disagreements_enhanced(self, responses: Dict[str, Any], clusters: List[List[int]]) -> List[Dict[str, Any]]:
        """Enhanced disagreement analysis with topic extraction and reasoning patterns."""
        disagreements = []
        model_names = list(responses.keys())
        response_texts = list(responses.values())
        
        # Extract reasoning patterns and key arguments
        reasoning_patterns = self._extract_reasoning_patterns(response_texts)
        
        # Analyze disagreements by topic areas
        topic_disagreements = self._analyze_topic_disagreements(response_texts, model_names)
        
        # Iterate through all unique pairs of models
        for i in range(len(model_names)):
            for j in range(i + 1, len(model_names)):
                model1_name = model_names[i]
                model2_name = model_names[j]
                response1 = response_texts[i]
                response2 = response_texts[j]
                
                # Calculate similarity between the two responses
                similarity = self.calculate_similarity_matrix([response1, response2])[0, 1]
                
                # Enhanced disagreement categorization
                disagreement_type = self._categorize_disagreement_enhanced([response1], [response2])
                
                # Extract specific points of disagreement
                disagreement_points = self._extract_disagreement_points(response1, response2)
                
                # Generate detailed explanation
                explanation = self._generate_disagreement_explanation_enhanced(
                    [response1], [response2], disagreement_points, self.llm_client
                )
                
                disagreement = {
                    "type": disagreement_type,
                    "cluster1": [model1_name],
                    "cluster2": [model2_name],
                    "explanation": explanation,
                    "disagreement_points": disagreement_points,
                    "similarity_score": float(similarity),
                    "reasoning_patterns": {
                        "model1": reasoning_patterns.get(model1_name, {}),
                        "model2": reasoning_patterns.get(model2_name, {})
                    }
                }
                disagreements.append(disagreement)
                    
        return disagreements

    def _extract_reasoning_patterns(self, responses: List[str]) -> Dict[str, Dict[str, Any]]:
        """Extract reasoning patterns from responses."""
        patterns = {}
        
        for i, response in enumerate(responses):
            pattern = {
                "uses_examples": bool(re.search(r'\b(example|instance|case|such as|like)\b', response, re.IGNORECASE)),
                "uses_evidence": bool(re.search(r'\b(evidence|data|research|study|fact|statistic)\b', response, re.IGNORECASE)),
                "uses_conditional": bool(re.search(r'\b(if|when|unless|provided that|assuming)\b', response, re.IGNORECASE)),
                "uses_comparison": bool(re.search(r'\b(however|but|although|while|whereas|on the other hand)\b', response, re.IGNORECASE)),
                "uses_authority": bool(re.search(r'\b(according to|research shows|experts say|studies indicate)\b', response, re.IGNORECASE)),
                "sentence_count": len(re.split(r'[.!?]+', response)),
                "word_count": len(response.split()),
                "has_conclusion": bool(re.search(r'\b(therefore|thus|consequently|in conclusion|overall)\b', response, re.IGNORECASE))
            }
            patterns[f"model_{i}"] = pattern
            
        return patterns

    def _analyze_topic_disagreements(self, responses: List[str], model_names: List[str]) -> Dict[str, List[str]]:
        """Analyze disagreements by topic areas."""
        # Simple keyword-based topic extraction
        topics = {
            "technical": ["algorithm", "implementation", "code", "system", "technical", "architecture"],
            "ethical": ["ethical", "moral", "right", "wrong", "fair", "bias", "justice"],
            "practical": ["practical", "feasible", "realistic", "implementable", "practical"],
            "economic": ["cost", "economic", "financial", "budget", "expensive", "affordable"],
            "social": ["social", "community", "people", "society", "impact", "benefit"],
            "legal": ["legal", "law", "regulation", "compliance", "policy"],
            "safety": ["safety", "security", "risk", "danger", "protect"]
        }
        
        topic_disagreements = defaultdict(list)
        
        for topic, keywords in topics.items():
            topic_responses = []
            for response in responses:
                if any(keyword in response.lower() for keyword in keywords):
                    topic_responses.append(response)
            
            if len(topic_responses) > 1:
                # Check for disagreements within this topic
                topic_similarity = self.calculate_similarity_matrix(topic_responses)
                avg_similarity = np.mean(topic_similarity)
                
                if avg_similarity < 0.8:  # Threshold for disagreement
                    topic_disagreements[topic].extend(topic_responses)
        
        return dict(topic_disagreements)

    def _extract_disagreement_points(self, response1: str, response2: str) -> List[str]:
        """Extract specific points where responses disagree."""
        # Split responses into sentences
        sentences1 = [s.strip() for s in re.split(r'[.!?]+', response1) if s.strip()]
        sentences2 = [s.strip() for s in re.split(r'[.!?]+', response2) if s.strip()]
        
        disagreement_points = []
        
        # Look for contrasting statements
        contrast_keywords = ["however", "but", "although", "while", "whereas", "on the other hand", "in contrast"]
        
        for sent1 in sentences1:
            for sent2 in sentences2:
                # Check if sentences contain contrasting keywords
                has_contrast = any(keyword in sent1.lower() or keyword in sent2.lower() 
                                 for keyword in contrast_keywords)
                
                if has_contrast:
                    # Calculate similarity between these sentences
                    similarity = self.calculate_similarity_matrix([sent1, sent2])[0, 1]
                    if similarity < 0.7:  # Low similarity indicates disagreement
                        disagreement_points.append(f"'{sent1}' vs '{sent2}'")
        
        return disagreement_points[:3]  # Limit to top 3 disagreements

    def _categorize_disagreement_enhanced(self, responses1: List[str], responses2: List[str]) -> str:
        """Enhanced categorization of disagreements."""
        # Get embeddings for all responses
        all_responses = responses1 + responses2
        embeddings = self.model.encode(all_responses)
        
        # Calculate average embeddings for each cluster
        cluster1_avg = np.mean(embeddings[:len(responses1)], axis=0)
        cluster2_avg = np.mean(embeddings[len(responses1):], axis=0)
        
        # Calculate cosine similarity between cluster averages
        similarity = np.dot(cluster1_avg, cluster2_avg) / (np.linalg.norm(cluster1_avg) * np.linalg.norm(cluster2_avg))
        
        # Enhanced categorization with more granular types
        if similarity < 0.7:
            return "Fundamental Disagreement - Models have completely different perspectives"
        elif similarity < 0.8:
            return "Major Disagreement - Models agree on some aspects but differ significantly"
        elif similarity < 0.9:
            return "Moderate Disagreement - Models mostly agree but have important differences"
        elif similarity < 0.95:
            return "Minor Disagreement - Models agree with slight variations"
        else:
            return "Strong Agreement - Models are essentially in consensus"

    def _generate_disagreement_explanation_enhanced(self, responses1: List[str], responses2: List[str], 

                                                  disagreement_points: List[str], llm_client: Any = None) -> str:
        """Generate enhanced explanation for disagreements using LLM."""
        if llm_client and responses1 and responses2:
            try:
                prompt = f"""Analyze the disagreement between these two AI model responses. 

                Focus on the key differences in reasoning, assumptions, or conclusions.

                

                Response 1: {responses1[0]}

                Response 2: {responses2[0]}

                

                Specific disagreement points: {disagreement_points}

                

                Provide a concise analysis (2-3 sentences) explaining:

                1. What the main disagreement is about

                2. Why the models might have different perspectives

                3. Which aspects they agree on (if any)

                

                Format as a clear, objective analysis."""
                
                explanation = llm_client._sync_query("meta-llama/Meta-Llama-3.1-70B-Instruct", prompt)
                return explanation
            except Exception as e:
                print(f"Error generating LLM-based explanation: {e}")
                # Fallback to similarity-based explanation
        
        # Fallback explanation based on similarity
        all_responses = responses1 + responses2
        embeddings = self.model.encode(all_responses)
        cluster1_avg = np.mean(embeddings[:len(responses1)], axis=0)
        cluster2_avg = np.mean(embeddings[len(responses1):], axis=0)
        similarity = np.dot(cluster1_avg, cluster2_avg) / (np.linalg.norm(cluster1_avg) * np.linalg.norm(cluster2_avg))
        
        if similarity < 0.7:
            return "Models have fundamentally different perspectives, possibly due to different training data, reasoning approaches, or interpretation of the question."
        elif similarity < 0.9:
            return "Models agree on core concepts but differ in their reasoning, emphasis, or specific conclusions."
        else:
            return "Models are in strong agreement with only minor differences in expression or emphasis."

    def _extract_topics(self, responses: Dict[str, str]) -> Dict[str, List[str]]:
        """Extract key topics from responses."""
        # Simple keyword-based topic extraction
        topic_keywords = {
            "technical": ["algorithm", "implementation", "code", "system", "technical", "architecture"],
            "ethical": ["ethical", "moral", "right", "wrong", "fair", "bias", "justice"],
            "practical": ["practical", "feasible", "realistic", "implementable", "practical"],
            "economic": ["cost", "economic", "financial", "budget", "expensive", "affordable"],
            "social": ["social", "community", "people", "society", "impact", "benefit"],
            "legal": ["legal", "law", "regulation", "compliance", "policy"],
            "safety": ["safety", "security", "risk", "danger", "protect"]
        }
        
        topics = defaultdict(list)
        
        for model, response in responses.items():
            response_lower = response.lower()
            for topic, keywords in topic_keywords.items():
                if any(keyword in response_lower for keyword in keywords):
                    topics[topic].append(model)
        
        return dict(topics)

    def _analyze_confidence_patterns(self, responses: Dict[str, str], similarity_matrix: np.ndarray) -> Dict[str, Any]:
        """Analyze confidence patterns across models."""
        model_names = list(responses.keys())
        
        # Calculate average similarity for each model
        avg_similarities = []
        for i in range(len(similarity_matrix)):
            similarities = [similarity_matrix[i][j] for j in range(len(similarity_matrix)) if i != j]
            avg_similarities.append(np.mean(similarities))
        
        # Find most and least confident models
        most_confident_idx = np.argmax(avg_similarities)
        least_confident_idx = np.argmin(avg_similarities)
        
        return {
            "most_confident_model": model_names[most_confident_idx],
            "least_confident_model": model_names[least_confident_idx],
            "confidence_scores": dict(zip(model_names, avg_similarities)),
            "confidence_variance": float(np.var(avg_similarities))
        }

    def create_visualization(self, consensus_data: Dict[str, Any]) -> Dict[str, Any]:
        """Create visualizations for the consensus analysis."""
        # Create similarity heatmap
        similarity_matrix = np.array(consensus_data["similarity_matrix"])
        heatmap = go.Figure(data=go.Heatmap(
            z=similarity_matrix,
            colorscale='RdYlGn',
            zmin=0,
            zmax=1
        ))
        
        # Create consensus score gauge
        gauge = go.Figure(go.Indicator(
            mode="gauge+number",
            value=consensus_data["consensus_score"] * 100,
            title={'text': "Consensus Score"},
            gauge={'axis': {'range': [0, 100]},
                  'bar': {'color': "darkblue"},
                  'steps': [
                      {'range': [0, 33], 'color': "red"},
                      {'range': [33, 66], 'color': "yellow"},
                      {'range': [66, 100], 'color': "green"}
                  ]}
        ))
        
        return {
            "heatmap": heatmap.to_json(),
            "gauge": gauge.to_json()
        }

    def synthesize_consensus_response(self, responses: Dict[str, Any], disagreements: List[Dict[str, Any]]) -> str:
        """Enhanced synthesis using LLM to intelligently combine responses."""
        # Collect all successful responses
        successful_responses = [data["response"] for data in responses.values() if data["status"] == "success"]

        if not successful_responses:
            return "No successful model responses to synthesize."

        # Use LLM for intelligent synthesis if available
        if self.llm_client and len(successful_responses) > 1:
            try:
                # Prepare the synthesis prompt
                responses_text = "\n\n".join([f"Model {i+1}: {response}" for i, response in enumerate(successful_responses)])
                
                # Include disagreement analysis if available
                disagreement_summary = ""
                if disagreements:
                    disagreement_summary = "\n\nKey Disagreements:\n"
                    for i, d in enumerate(disagreements[:3]):  # Top 3 disagreements
                        disagreement_summary += f"- {d['type']}: {d['explanation']}\n"
                
                synthesis_prompt = f"""You are an expert consensus synthesizer. Analyze the following AI model responses and create a comprehensive, well-reasoned synthesis that:



1. Identifies the core points of agreement

2. Addresses key disagreements with balanced reasoning

3. Provides a coherent, evidence-based consensus response

4. Acknowledges uncertainty where appropriate

5. Suggests areas for further investigation if needed



Model Responses:

{responses_text}

{disagreement_summary}



Create a synthesis that is:

- Comprehensive but concise (2-3 paragraphs)

- Balanced and objective

- Well-structured with clear sections

- Professional in tone



Format your response with clear sections: Summary, Key Agreements, Addressing Disagreements, and Consensus Conclusion."""

                # Use a powerful model for synthesis
                synthesized_response = self.llm_client._sync_query("meta-llama/Meta-Llama-3.1-405B-Instruct", synthesis_prompt)
                
                # Add metadata about the synthesis
                metadata = f"""

---

**Synthesis Metadata:**

- Models consulted: {len(successful_responses)}

- Consensus score: {self._calculate_overall_consensus(successful_responses):.2f}

- Disagreements identified: {len(disagreements)}

- Synthesis method: LLM-enhanced consensus

---

"""
                return metadata + "\n\n" + synthesized_response
                
            except Exception as e:
                print(f"Error in LLM synthesis: {e}")
                # Fallback to basic synthesis
        
        # Fallback synthesis (original method)
        synthesized_response = []
        synthesized_response.append("### Synthesized Consensus Response\n\n")
        synthesized_response.append("Based on the input from various models, here is a consolidated view:\n\n")

        # Add a general summary of common points
        synthesized_response.append("**Common Themes:** All models generally agree on the core aspects.\n\n")

        # Elaborate on disagreements if any
        if disagreements:
            synthesized_response.append("**Areas of Divergence:**\n")
            for i, d in enumerate(disagreements):
                synthesized_response.append(f"- **Disagreement {i+1} ({d['type']}):** Models {', '.join(d['cluster1'])} and {', '.join(d['cluster2'])} have differing views. {d['explanation']}\n")
        else:
            synthesized_response.append("Models are in strong agreement on this topic.\n")

        # Append all responses for reference
        synthesized_response.append("\n--- \n\n**Individual Model Responses (for reference):**\n\n")
        for model_name, response_text in responses.items():
            if response_text["status"] == "success":
                synthesized_response.append(f"**{model_name}:**\n{response_text['response']}\n\n")

        return "".join(synthesized_response)

    def _calculate_overall_consensus(self, responses: List[str]) -> float:
        """Calculate overall consensus score from responses."""
        if len(responses) < 2:
            return 1.0
        
        similarity_matrix = self.calculate_similarity_matrix(responses)
        return float(np.mean(similarity_matrix))