File size: 14,429 Bytes
c9bb632 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import os
from typing import List, Dict, Any, Optional
import modal
from dotenv import load_dotenv
import json
import asyncio
from openai import OpenAI
from datetime import datetime
import logging
from consensus_logic import ConsensusAnalyzer
import numpy as np
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
# Initialize Modal app
app = modal.App("consensus-builder")
# Create Modal image with dependencies
image = (
modal.Image.debian_slim()
.pip_install("python-dotenv>=1.0.0")
.pip_install("sentence-transformers>=2.2.2")
.pip_install("scikit-learn>=1.3.0")
.pip_install("plotly>=5.18.0")
.pip_install("PyPDF2>=3.0.0")
.pip_install("python-docx>=0.8.11")
.pip_install_from_requirements("requirements.txt")
.add_local_file("consensus_logic.py", "/root/consensus_logic.py")
)
# Nebius client using OpenAI SDK and env variable
class NebiusClient:
def __init__(self, api_key: str):
self.client = OpenAI(
base_url="https://api.studio.nebius.com/v1/",
api_key=api_key
)
async def query_model(self, model_name: str, prompt: str) -> str:
# The OpenAI SDK is synchronous, so run in a thread
import concurrent.futures
loop = asyncio.get_event_loop()
return await loop.run_in_executor(None, self._sync_query, model_name, prompt)
def _sync_query(self, model_name: str, prompt: str) -> str:
try:
logger.info(f"Sending request to {model_name} with prompt: {prompt[:100]}...")
completion = self.client.chat.completions.create(
model=model_name,
messages=[{"role": "user", "content": prompt}],
temperature=0.7,
max_tokens=1000
)
logger.info(f"Raw response from {model_name}: {completion}")
if not completion:
raise Exception(f"Empty response from {model_name}")
if not completion.choices:
raise Exception(f"No choices in response from {model_name}")
if not completion.choices[0].message:
raise Exception(f"No message in response from {model_name}")
content = completion.choices[0].message.content
logger.info(f"Processed response from {model_name}: {content[:100]}...")
return content
except Exception as e:
logger.error(f"Error querying {model_name}: {str(e)}")
raise Exception(f"Error querying {model_name}: {str(e)}")
class MCPServer:
def __init__(self):
try:
nebius_api_key = os.environ.get("NEBIUS_API_KEY")
if not nebius_api_key:
raise ValueError("NEBIUS_API_KEY environment variable not set within MCPServer initialization.")
self.nebius_client = NebiusClient(api_key=nebius_api_key)
self.models = [
# Large models for comprehensive analysis
"meta-llama/Meta-Llama-3.1-70B-Instruct",
"meta-llama/Meta-Llama-3.1-405B-Instruct",
# Latest models
"meta-llama/Llama-3.3-70B-Instruct",
"google/gemma-3-27b-it",
# Additional models
"Qwen/Qwen2.5-72B-Instruct"
]
self.session_state = {}
except Exception as e:
logger.error(f"Failed to initialize MCPServer: {str(e)}")
raise
def calculate_response_confidence(self, response: str, other_responses: list) -> float:
"""Calculate confidence score for a model's response based on its similarity to other responses."""
try:
from sentence_transformers import SentenceTransformer
# Initialize the sentence transformer model
model = SentenceTransformer('all-MiniLM-L6-v2')
# Get embeddings for all responses
all_responses = [response] + other_responses
embeddings = model.encode(all_responses)
# Calculate cosine similarity between this response and all others
similarities = []
for i in range(1, len(embeddings)):
similarity = np.dot(embeddings[0], embeddings[i]) / (np.linalg.norm(embeddings[0]) * np.linalg.norm(embeddings[i]))
similarities.append(similarity)
# Confidence is the average similarity to other responses
confidence = np.mean(similarities) if similarities else 0.0
return float(confidence)
except Exception as e:
logger.error(f"Error calculating confidence: {str(e)}")
return 0.0
async def process_query(self, query: str, document_content: Optional[str] = None) -> Dict[str, Any]:
# Create a new session
session_id = datetime.now().strftime("%Y%m%d_%H%M%S")
self.session_state[session_id] = {
"query": query,
"document": document_content,
"responses": {},
"status": "processing"
}
try:
# Prepare the prompt with document context if provided
full_prompt = query
if document_content:
full_prompt = f"Context from document:\n{document_content}\n\nQuestion: {query}"
logger.info(f"Processing query with prompt: {full_prompt[:100]}...")
# Query all models in parallel with timeout
tasks = [self.nebius_client.query_model(model, full_prompt) for model in self.models]
responses = await asyncio.gather(*tasks, return_exceptions=True)
# Process responses
processed_responses = {}
successful_responses = []
# First pass: collect successful responses
for model, response in zip(self.models, responses):
if isinstance(response, Exception):
logger.error(f"Error from {model}: {str(response)}")
processed_responses[model] = {
"error": str(response),
"status": "failed"
}
else:
try:
if response is None:
raise Exception("Received None response")
successful_responses.append(response)
processed_responses[model] = {
"response": response,
"status": "success"
}
logger.info(f"Successfully processed response from {model}")
except Exception as e:
logger.error(f"Error processing response from {model}: {str(e)}")
processed_responses[model] = {
"error": f"Error processing response: {str(e)}",
"status": "failed"
}
# Second pass: calculate confidence scores
for model, response_data in processed_responses.items():
if response_data["status"] == "success":
# Get other successful responses for comparison
other_responses = [r for r in successful_responses if r != response_data["response"]]
confidence = self.calculate_response_confidence(response_data["response"], other_responses)
response_data["confidence"] = confidence
# Update session state
self.session_state[session_id]["responses"] = processed_responses
self.session_state[session_id]["status"] = "completed"
logger.info(f"Completed processing query. Session ID: {session_id}")
return {
"session_id": session_id,
"responses": processed_responses
}
except Exception as e:
logger.error(f"Error processing query: {str(e)}")
self.session_state[session_id]["status"] = "failed"
self.session_state[session_id]["error"] = str(e)
raise
def get_session_status(self, session_id: str) -> Dict[str, Any]:
return self.session_state.get(session_id, {"error": "Session not found"})
def clear_session(self, session_id: str) -> bool:
if session_id in self.session_state:
del self.session_state[session_id]
return True
return False
# Initialize Modal functions with secret
@app.function(image=image, secrets=[modal.Secret.from_name("nebius")])
def parallel_model_query(query: str, models: List[str], document_content: Optional[str] = None):
print("NEBIUS_API_KEY in Modal Cloud:", os.environ.get("NEBIUS_API_KEY"))
server = MCPServer()
return asyncio.run(server.process_query(query, document_content))
@app.function(image=image)
def consensus_algorithm(responses: Dict[str, Any]) -> Dict[str, Any]:
"""Calculate consensus between model responses with enhanced analysis."""
try:
# Initialize consensus analyzer
analyzer = ConsensusAnalyzer()
# Calculate consensus with enhanced features
consensus_result = analyzer.calculate_consensus(responses)
return {
"consensus_score": consensus_result.get("consensus_score", 0),
"clusters": consensus_result.get("clusters", []),
"disagreements": consensus_result.get("disagreements", []),
"similarity_matrix": consensus_result.get("similarity_matrix", []),
"topics": consensus_result.get("topics", {}),
"confidence_analysis": consensus_result.get("confidence_analysis", {})
}
except Exception as e:
logger.error(f"Error in consensus algorithm: {str(e)}")
return {
"consensus_score": 0,
"clusters": [],
"disagreements": [],
"similarity_matrix": [],
"topics": {},
"confidence_analysis": {}
}
@app.function(image=image, secrets=[modal.Secret.from_name("nebius")])
def disagreement_analyzer(responses: Dict[str, Any], api_key: str) -> Dict[str, Any]:
"""Enhanced disagreement analyzer with topic extraction and confidence analysis."""
try:
# Initialize consensus analyzer with LLM client
nebius_client_for_analyzer = NebiusClient(api_key=api_key)
analyzer = ConsensusAnalyzer(llm_client=nebius_client_for_analyzer)
# Calculate enhanced consensus (which includes disagreement analysis)
consensus_result = analyzer.calculate_consensus(responses)
# Extract enhanced disagreement information
disagreements = consensus_result.get("disagreements", [])
topics = consensus_result.get("topics", {})
confidence_analysis = consensus_result.get("confidence_analysis", {})
# Generate comprehensive explanation
if disagreements:
# Count disagreement types
disagreement_types = {}
for d in disagreements:
d_type = d.get("type", "Unknown")
disagreement_types[d_type] = disagreement_types.get(d_type, 0) + 1
# Create detailed explanation
explanation_parts = []
explanation_parts.append(f"Analysis of {len(disagreements)} disagreements found:")
for d_type, count in disagreement_types.items():
explanation_parts.append(f"- {count} {d_type.lower()}")
if topics:
explanation_parts.append(f"\nKey topics discussed: {', '.join(topics.keys())}")
if confidence_analysis:
most_confident = confidence_analysis.get("most_confident_model", "Unknown")
least_confident = confidence_analysis.get("least_confident_model", "Unknown")
explanation_parts.append(f"\nConfidence analysis: {most_confident} shows highest agreement with others, {least_confident} shows lowest.")
explanation = "\n".join(explanation_parts)
else:
explanation = "Models are in strong agreement with no significant disagreements detected."
return {
"explanation": explanation,
"disagreements": disagreements,
"topics": topics,
"confidence_analysis": confidence_analysis,
"disagreement_summary": {
"total_disagreements": len(disagreements),
"disagreement_types": {d.get("type", "Unknown"): len([x for x in disagreements if x.get("type") == d.get("type")]) for d in disagreements},
"avg_similarity": np.mean([d.get("similarity_score", 0) for d in disagreements]) if disagreements else 1.0
}
}
except Exception as e:
logger.error(f"Error in enhanced disagreement analyzer: {str(e)}")
return {
"explanation": f"Error analyzing disagreements: {str(e)}",
"disagreements": [],
"topics": {},
"confidence_analysis": {},
"disagreement_summary": {
"total_disagreements": 0,
"disagreement_types": {},
"avg_similarity": 0.0
}
}
@app.function(image=image, secrets=[modal.Secret.from_name("nebius")])
def synthesize_consensus(responses: Dict[str, Any], disagreements: List[Dict[str, Any]], api_key: str) -> str:
"""Enhanced consensus synthesis using LLM for intelligent response combination."""
try:
analyzer = ConsensusAnalyzer(llm_client=NebiusClient(api_key=api_key))
return analyzer.synthesize_consensus_response(responses, disagreements)
except Exception as e:
logger.error(f"Error in enhanced consensus synthesis: {str(e)}")
return f"Error synthesizing consensus response: {str(e)}" |