File size: 6,365 Bytes
fec6b6f
 
 
 
 
 
 
2e5c439
fec6b6f
 
 
 
 
2e5c439
 
 
fec6b6f
 
 
 
 
 
 
 
 
 
 
 
 
2e5c439
 
 
fec6b6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e5c439
 
 
fec6b6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e5c439
 
 
 
 
 
 
fec6b6f
 
 
 
 
 
2e5c439
 
 
 
 
 
fec6b6f
2e5c439
 
 
 
 
 
 
 
fec6b6f
 
2e5c439
 
 
 
 
 
 
 
 
 
 
 
 
 
fec6b6f
 
 
 
 
 
 
 
2e5c439
 
 
 
 
 
 
 
 
 
 
 
 
fec6b6f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import gradio as gr
from ultralytics import YOLO
from PIL import Image
import cv2
import numpy as np
import tempfile
import os
from pathlib import Path

# Load the YOLOv8 model
model = YOLO('yolov8n.pt')

def process_image(image):
    """
    Process a single image for object detection
    """
    results = model(image)
    # Get detection information
    boxes = results[0].boxes
    detection_info = []
    for box in boxes:
        class_id = int(box.cls[0])
        class_name = results[0].names[class_id]
        confidence = float(box.conf[0])
        detection_info.append(f"{class_name}: {confidence:.2%}")
    
    return Image.fromarray(results[0].plot()), "\n".join(detection_info)

def process_video(video_path):
    """
    Process video for object detection
    """
    with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_file:
        output_path = temp_file.name

    cap = cv2.VideoCapture(video_path)
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = int(cap.get(cv2.CAP_PROP_FPS))
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
    
    detection_summary = []
    frame_count = 0
    
    try:
        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break
                
            frame_count += 1
            results = model(frame)
            
            # Collect detection information for this frame
            if frame_count % int(fps) == 0:  # Sample every second
                for box in results[0].boxes:
                    class_id = int(box.cls[0])
                    class_name = results[0].names[class_id]
                    detection_summary.append(class_name)
            
            annotated_frame = results[0].plot()
            out.write(annotated_frame)
            
    finally:
        cap.release()
        out.release()
    
    # Create summary of detected objects
    if detection_summary:
        from collections import Counter
        counts = Counter(detection_summary)
        summary = "\n".join([f"{obj}: {count} occurrences" for obj, count in counts.most_common()])
    else:
        summary = "No objects detected"
    
    return output_path, summary

def detect_objects(media):
    """
    Unified function to handle both image and video inputs
    """
    if media is None:
        return None, None, None, "Please upload an image or video to begin detection.", gr.update(visible=True), gr.update(visible=False)
    
    try:
        if isinstance(media, str) and media.lower().endswith(('.mp4', '.avi', '.mov')):
            output_video, detection_summary = process_video(media)
            return (None, output_video, detection_summary,
                    "βœ… Video processing complete! Check the detection summary below.", 
                    gr.update(visible=False), gr.update(visible=True))
        else:
            if isinstance(media, str):
                image = cv2.imread(media)
                image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            else:
                image = media
            processed_image, detection_info = process_image(image)
            return (processed_image, None, detection_info,
                    "βœ… Image processing complete! Check the detections below.", 
                    gr.update(visible=True), gr.update(visible=False))
    except Exception as e:
        return None, None, None, f"❌ Error: {str(e)}", gr.update(visible=False), gr.update(visible=False)

# Custom CSS for styling
custom_css = """
#app-container {
    max-width: 1200px;
    margin: 0 auto;
    padding: 20px;
}

#logo-img {
    max-height: 100px;
    margin-bottom: 20px;
}

.upload-box {
    border: 2px dashed #ccc;
    padding: 20px;
    text-align: center;
    border-radius: 8px;
    background-color: #f8f9fa;
    margin: 20px 0;
}

.results-container {
    background-color: #ffffff;
    border-radius: 8px;
    padding: 15px;
    box-shadow: 0 2px 4px rgba(0,0,0,0.1);
    margin-top: 20px;
}

.detection-info {
    background-color: #f8f9fa;
    padding: 15px;
    border-radius: 8px;
    margin-top: 10px;
    font-family: monospace;
}

.center {
    display: flex;
    justify-content: center;
    align-items: center;
    margin-bottom: 1rem;
}
"""

# Create Gradio interface
with gr.Blocks(css=custom_css) as demo:
    with gr.Column(elem_id="app-container"):
        # Logo and Header
        with gr.Column(elem_classes="center"):
            gr.Image("logo-h.png", 
                    show_label=False, 
                    container=False,
                    elem_id="logo-img",
                    height=100)
        
        gr.Markdown("# πŸ” Object Detection")
        
        # Upload Section
        with gr.Column(elem_classes="upload-box"):
            gr.Markdown("### πŸ“€ Upload your file")
            input_media = gr.File(
                label="Drag and drop or click to upload (Images: jpg, jpeg, png | Videos: mp4, avi, mov)",
                file_types=["image", "video"]
            )
        
        # Status Message
        status_text = gr.Textbox(
            label="Status",
            value="Waiting for upload...",
            interactive=False
        )
        
        # Detection Information
        detection_info = gr.Textbox(
            label="Detection Results",
            elem_classes="detection-info",
            interactive=False
        )
        
        # Results Section
        with gr.Column(elem_classes="results-container"):
            with gr.Row():
                with gr.Column(visible=False) as image_column:
                    output_image = gr.Image(label="Detected Objects")
                with gr.Column(visible=False) as video_column:
                    output_video = gr.Video(label="Processed Video")
    
        # Handle file upload
        input_media.upload(
            fn=detect_objects,
            inputs=[input_media],
            outputs=[
                output_image,
                output_video,
                detection_info,
                status_text,
                image_column,
                video_column
            ]
        )

if __name__ == "__main__":
    demo.launch(share=True)