Spaces:
Sleeping
Sleeping
File size: 6,365 Bytes
fec6b6f 2e5c439 fec6b6f 2e5c439 fec6b6f 2e5c439 fec6b6f 2e5c439 fec6b6f 2e5c439 fec6b6f 2e5c439 fec6b6f 2e5c439 fec6b6f 2e5c439 fec6b6f 2e5c439 fec6b6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import gradio as gr
from ultralytics import YOLO
from PIL import Image
import cv2
import numpy as np
import tempfile
import os
from pathlib import Path
# Load the YOLOv8 model
model = YOLO('yolov8n.pt')
def process_image(image):
"""
Process a single image for object detection
"""
results = model(image)
# Get detection information
boxes = results[0].boxes
detection_info = []
for box in boxes:
class_id = int(box.cls[0])
class_name = results[0].names[class_id]
confidence = float(box.conf[0])
detection_info.append(f"{class_name}: {confidence:.2%}")
return Image.fromarray(results[0].plot()), "\n".join(detection_info)
def process_video(video_path):
"""
Process video for object detection
"""
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_file:
output_path = temp_file.name
cap = cv2.VideoCapture(video_path)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
detection_summary = []
frame_count = 0
try:
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
results = model(frame)
# Collect detection information for this frame
if frame_count % int(fps) == 0: # Sample every second
for box in results[0].boxes:
class_id = int(box.cls[0])
class_name = results[0].names[class_id]
detection_summary.append(class_name)
annotated_frame = results[0].plot()
out.write(annotated_frame)
finally:
cap.release()
out.release()
# Create summary of detected objects
if detection_summary:
from collections import Counter
counts = Counter(detection_summary)
summary = "\n".join([f"{obj}: {count} occurrences" for obj, count in counts.most_common()])
else:
summary = "No objects detected"
return output_path, summary
def detect_objects(media):
"""
Unified function to handle both image and video inputs
"""
if media is None:
return None, None, None, "Please upload an image or video to begin detection.", gr.update(visible=True), gr.update(visible=False)
try:
if isinstance(media, str) and media.lower().endswith(('.mp4', '.avi', '.mov')):
output_video, detection_summary = process_video(media)
return (None, output_video, detection_summary,
"β
Video processing complete! Check the detection summary below.",
gr.update(visible=False), gr.update(visible=True))
else:
if isinstance(media, str):
image = cv2.imread(media)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
else:
image = media
processed_image, detection_info = process_image(image)
return (processed_image, None, detection_info,
"β
Image processing complete! Check the detections below.",
gr.update(visible=True), gr.update(visible=False))
except Exception as e:
return None, None, None, f"β Error: {str(e)}", gr.update(visible=False), gr.update(visible=False)
# Custom CSS for styling
custom_css = """
#app-container {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
#logo-img {
max-height: 100px;
margin-bottom: 20px;
}
.upload-box {
border: 2px dashed #ccc;
padding: 20px;
text-align: center;
border-radius: 8px;
background-color: #f8f9fa;
margin: 20px 0;
}
.results-container {
background-color: #ffffff;
border-radius: 8px;
padding: 15px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
margin-top: 20px;
}
.detection-info {
background-color: #f8f9fa;
padding: 15px;
border-radius: 8px;
margin-top: 10px;
font-family: monospace;
}
.center {
display: flex;
justify-content: center;
align-items: center;
margin-bottom: 1rem;
}
"""
# Create Gradio interface
with gr.Blocks(css=custom_css) as demo:
with gr.Column(elem_id="app-container"):
# Logo and Header
with gr.Column(elem_classes="center"):
gr.Image("logo-h.png",
show_label=False,
container=False,
elem_id="logo-img",
height=100)
gr.Markdown("# π Object Detection")
# Upload Section
with gr.Column(elem_classes="upload-box"):
gr.Markdown("### π€ Upload your file")
input_media = gr.File(
label="Drag and drop or click to upload (Images: jpg, jpeg, png | Videos: mp4, avi, mov)",
file_types=["image", "video"]
)
# Status Message
status_text = gr.Textbox(
label="Status",
value="Waiting for upload...",
interactive=False
)
# Detection Information
detection_info = gr.Textbox(
label="Detection Results",
elem_classes="detection-info",
interactive=False
)
# Results Section
with gr.Column(elem_classes="results-container"):
with gr.Row():
with gr.Column(visible=False) as image_column:
output_image = gr.Image(label="Detected Objects")
with gr.Column(visible=False) as video_column:
output_video = gr.Video(label="Processed Video")
# Handle file upload
input_media.upload(
fn=detect_objects,
inputs=[input_media],
outputs=[
output_image,
output_video,
detection_info,
status_text,
image_column,
video_column
]
)
if __name__ == "__main__":
demo.launch(share=True) |