Spaces:
Sleeping
Sleeping
File size: 7,700 Bytes
eb3b9bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
#!/usr/bin/env python3
"""
Streamlit App for Tourism Package Prediction
"""
import streamlit as st
import pandas as pd
import numpy as np
import joblib
from huggingface_hub import hf_hub_download
# Page configuration
st.set_page_config(
page_title="Tourism Package Prediction",
page_icon="🏖️",
layout="wide",
initial_sidebar_state="expanded"
)
@st.cache_resource
def load_model():
"""Load the trained model from HuggingFace Hub"""
try:
model_path = hf_hub_download(
repo_id="abhishek-kumar/tourism-package-prediction-model",
filename="best_model.joblib"
)
model = joblib.load(model_path)
return model
except Exception as e:
st.error(f"Error loading model: {e}")
return None
def prepare_input_data(age, gender, marital_status, city_tier, type_of_contact,
occupation, designation, monthly_income, num_person_visiting,
num_children_visiting, preferred_property_star, num_trips,
passport, own_car, duration_of_pitch, product_pitched,
num_followups, pitch_satisfaction_score):
"""Prepare input data for model prediction"""
# Create mapping dictionaries
gender_map = {"Male": 1, "Female": 0}
marital_map = {"Single": 2, "Married": 1, "Divorced": 0, "Unmarried": 3}
contact_map = {"Self Enquiry": 1, "Company Invited": 0}
occupation_map = {"Salaried": 2, "Small Business": 1, "Free Lancer": 0}
designation_map = {"Executive": 0, "Manager": 1, "Senior Manager": 2, "AVP": 3, "VP": 4}
product_map = {"Basic": 0, "Standard": 1, "Deluxe": 2, "Super Deluxe": 3}
passport_map = {"Yes": 1, "No": 0}
car_map = {"Yes": 1, "No": 0}
# Feature engineering (matching training data encoding)
if monthly_income <= 15000:
income_category = 0 # Low
elif monthly_income <= 25000:
income_category = 1 # Medium
elif monthly_income <= 35000:
income_category = 2 # High
else:
income_category = 3 # Very High
if age <= 25:
age_group = 0 # Young
elif age <= 35:
age_group = 1 # Adult
elif age <= 45:
age_group = 2 # Middle-aged
elif age <= 55:
age_group = 3 # Senior
else:
age_group = 4 # Elderly
# Create input array
input_array = np.array([[
age, contact_map[type_of_contact], city_tier, duration_of_pitch,
occupation_map[occupation], gender_map[gender], num_person_visiting,
num_followups, product_map[product_pitched], preferred_property_star,
marital_map[marital_status], num_trips, passport_map[passport],
pitch_satisfaction_score, car_map[own_car], num_children_visiting,
designation_map[designation], monthly_income, income_category, age_group
]])
return input_array
def main():
"""Main Streamlit app"""
st.title("Tourism Package Prediction")
st.markdown("### Predict Customer Purchase Likelihood for Wellness Tourism Package")
st.markdown("---")
# Load model
model = load_model()
if model is None:
st.error("Failed to load the prediction model.")
return
# Sidebar inputs
st.sidebar.header("Customer Information")
# Demographics
st.sidebar.subheader("Demographics")
age = st.sidebar.slider("Age", 18, 80, 35)
gender = st.sidebar.selectbox("Gender", ["Male", "Female"])
marital_status = st.sidebar.selectbox("Marital Status", ["Single", "Married", "Divorced", "Unmarried"])
# Location & Contact
st.sidebar.subheader("Location & Contact")
city_tier = st.sidebar.selectbox("City Tier", [1, 2, 3])
type_of_contact = st.sidebar.selectbox("Type of Contact", ["Self Enquiry", "Company Invited"])
# Professional Info
st.sidebar.subheader("Professional Info")
occupation = st.sidebar.selectbox("Occupation", ["Salaried", "Small Business", "Free Lancer"])
designation = st.sidebar.selectbox("Designation", ["Executive", "Manager", "Senior Manager", "AVP", "VP"])
monthly_income = st.sidebar.number_input("Monthly Income", 10000, 50000, 20000)
# Travel Preferences
st.sidebar.subheader("Travel Preferences")
num_person_visiting = st.sidebar.slider("Number of Persons Visiting", 1, 5, 2)
num_children_visiting = st.sidebar.slider("Number of Children Visiting", 0, 3, 0)
preferred_property_star = st.sidebar.slider("Preferred Property Star Rating", 1.0, 5.0, 3.0, 0.5)
num_trips = st.sidebar.slider("Number of Trips per Year", 0.0, 10.0, 2.0, 0.5)
# Additional Info
st.sidebar.subheader("Additional Info")
passport = st.sidebar.selectbox("Has Passport", ["Yes", "No"])
own_car = st.sidebar.selectbox("Owns Car", ["Yes", "No"])
# Sales Interaction
st.sidebar.subheader("Sales Interaction")
duration_of_pitch = st.sidebar.slider("Duration of Pitch (minutes)", 5, 60, 15)
product_pitched = st.sidebar.selectbox("Product Pitched", ["Basic", "Standard", "Deluxe", "Super Deluxe"])
num_followups = st.sidebar.slider("Number of Followups", 0.0, 6.0, 3.0, 0.5)
pitch_satisfaction_score = st.sidebar.slider("Pitch Satisfaction Score", 1, 5, 3)
# Main content
col1, col2 = st.columns([2, 1])
with col1:
st.subheader("Customer Profile Summary")
profile_data = {
"Age": age,
"Gender": gender,
"Marital Status": marital_status,
"City Tier": city_tier,
"Occupation": occupation,
"Monthly Income": f"₹{monthly_income:,}",
"Number of Persons": num_person_visiting,
"Preferred Star Rating": preferred_property_star,
"Annual Trips": num_trips,
"Has Passport": passport,
"Owns Car": own_car
}
for key, value in profile_data.items():
st.write(f"**{key}:** {value}")
with col2:
st.subheader("Prediction")
if st.button("Predict Purchase Likelihood", type="primary"):
input_data = prepare_input_data(
age, gender, marital_status, city_tier, type_of_contact,
occupation, designation, monthly_income, num_person_visiting,
num_children_visiting, preferred_property_star, num_trips,
passport, own_car, duration_of_pitch, product_pitched,
num_followups, pitch_satisfaction_score
)
try:
prediction = model.predict(input_data)[0]
prediction_proba = model.predict_proba(input_data)[0]
if prediction == 1:
st.success("High likelihood of purchase!")
st.write(f"**Confidence:** {prediction_proba[1]:.2%}")
st.balloons()
else:
st.warning("Low likelihood of purchase")
st.write(f"**Confidence:** {prediction_proba[0]:.2%}")
# Probability breakdown
st.subheader("Probability Breakdown")
prob_df = pd.DataFrame({
'Outcome': ['Will Not Purchase', 'Will Purchase'],
'Probability': [prediction_proba[0], prediction_proba[1]]
})
st.bar_chart(prob_df.set_index('Outcome'))
except Exception as e:
st.error(f"Prediction error: {e}")
st.markdown("---")
st.markdown("### About This Model")
st.info("""
This ML model predicts customer purchase likelihood for the Wellness Tourism Package
based on demographics, travel preferences, and sales interaction data.
""")
if __name__ == "__main__":
main()
|