File size: 15,467 Bytes
6a9b2e3
 
b875f63
b2d49d5
6a9b2e3
 
 
 
b875f63
6a9b2e3
d5cecee
 
6a9b2e3
 
d5cecee
 
 
 
 
f7bdd9b
6a9b2e3
 
b2d49d5
 
6a9b2e3
 
 
 
 
 
 
b875f63
6a9b2e3
 
 
 
 
 
 
 
 
 
 
 
b875f63
 
 
 
 
a07239e
b875f63
6a9b2e3
 
 
b2d49d5
 
6a9b2e3
02b18e1
b2d49d5
 
 
 
02b18e1
b2d49d5
 
 
 
 
 
02b18e1
b2d49d5
 
 
02b18e1
b2d49d5
 
 
02b18e1
b2d49d5
 
 
02b18e1
b2d49d5
 
 
 
02b18e1
b2d49d5
 
02b18e1
b2d49d5
 
02b18e1
b2d49d5
 
02b18e1
b2d49d5
 
 
02b18e1
 
 
 
b2d49d5
02b18e1
 
 
 
b2d49d5
 
02b18e1
b2d49d5
02b18e1
 
 
b2d49d5
 
 
 
 
b4357f5
 
 
 
6a9b2e3
 
 
d5cecee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b875f63
 
 
02b18e1
 
 
 
 
d5cecee
 
b875f63
6a9b2e3
02b18e1
b875f63
 
 
 
02b18e1
b875f63
 
 
 
02b18e1
b875f63
 
 
 
 
02b18e1
b875f63
 
b4357f5
02b18e1
b4357f5
 
 
 
 
 
b875f63
02b18e1
b875f63
 
 
02b18e1
b875f63
 
 
02b18e1
b875f63
 
 
 
 
02b18e1
b875f63
 
 
 
 
02b18e1
b875f63
 
 
02b18e1
b875f63
 
02b18e1
b875f63
02b18e1
 
b875f63
02b18e1
 
b875f63
 
02b18e1
b875f63
 
 
02b18e1
b875f63
 
02b18e1
b875f63
6a9b2e3
 
 
 
b875f63
 
 
 
 
d5cecee
 
6a9b2e3
 
 
a07239e
 
6a9b2e3
b875f63
b4357f5
b875f63
 
02b18e1
6a9b2e3
02b18e1
b875f63
 
02b18e1
 
 
 
 
 
b875f63
6a9b2e3
 
02b18e1
b875f63
6a9b2e3
02b18e1
b875f63
6a9b2e3
b875f63
02b18e1
b875f63
 
02b18e1
b875f63
 
 
d5cecee
02b18e1
b875f63
 
6a9b2e3
b875f63
 
02b18e1
b875f63
 
02b18e1
b875f63
 
02b18e1
b875f63
02b18e1
 
 
 
b875f63
02b18e1
b875f63
 
02b18e1
d5cecee
 
 
 
02b18e1
b875f63
 
 
 
02b18e1
 
 
 
d5cecee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b875f63
 
02b18e1
 
 
a07239e
b875f63
a07239e
 
b875f63
a07239e
 
02b18e1
a07239e
f7bdd9b
02b18e1
a07239e
 
 
02b18e1
a07239e
 
02b18e1
a07239e
 
 
 
 
 
 
b4357f5
a07239e
 
 
 
 
 
02b18e1
a07239e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02b18e1
a07239e
 
02b18e1
a07239e
 
 
02b18e1
 
 
 
a07239e
 
02b18e1
a07239e
02b18e1
 
 
 
 
 
 
a07239e
 
 
 
 
 
02b18e1
a07239e
 
 
 
 
 
 
02b18e1
a07239e
 
 
 
 
 
02b18e1
a07239e
f7bdd9b
d5cecee
 
 
 
 
 
 
 
 
 
 
 
 
a07239e
02b18e1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
"""
This script implements a Voice Activity Detection (VAD) system using a Convolutional Neural Network (CNN) model.
The script uses Gradio for the user interface, NumPy and SciPy for signal
processing, and ONNX Runtime for model inference.

Modules:
    - gradio: For creating the web interface.
    - numpy: For numerical operations.
    - scipy: For signal processing.
    - onnxruntime: For running the ONNX model.
    - threading: For running model inference in a separate thread.
    - queue: For thread-safe communication between threads.
"""

import atexit
import queue
import threading
import time

import gradio as gr
import numpy as np
import onnxruntime as ort
from scipy import signal
from scipy.fft import rfft

# Parameters
ORIGINAL_FS = 48_000  # Original sampling frequency in Hz
DECIMATION_FACTOR = 3  # Decimation factor
TARGET_FS = ORIGINAL_FS // DECIMATION_FACTOR  # Target sampling frequency in Hz
FRAME_DURATION_MS = 25  # Frame duration in milliseconds
FRAME_SIZE = int(ORIGINAL_FS * FRAME_DURATION_MS / 1000)  # Frame size
FRAME_STEP = FRAME_SIZE // 2  # 50% overlap

# FFT parameters
DECIMATED_FRAME_SIZE = FRAME_SIZE // DECIMATION_FACTOR
FFT_SIZE = 1
while FFT_SIZE < DECIMATED_FRAME_SIZE:
    FFT_SIZE <<= 1

# Mel spectrogram parameters
N_FILTERS = 40  # Number of mel filters
FREQ_LOW = 300  # Lower frequency bound
FREQ_HIGH = 8000  # Upper frequency bound

# Model evaluation parameters
INITIAL_FRAMES = 40  # Initial frames required for first model evaluation
FRAMES_PER_EVAL = 20  # Run model every this many new frames after initial

# EWMA parameter
ALPHA = 0.9  # Weight for current observation in EWMA

# Filter coefficients
FILTER_COEFFICIENTS = np.array([0.0625, 0.125, 0.25, 0.5, 0.25, 0.125, 0.0625])

# Create window function (Hanning window)
window = np.hanning(DECIMATED_FRAME_SIZE)


# Create mel filterbank matrix
def create_mel_filterbank(n_filt, freq_low, freq_high, n_fft, fs):
    """
    Create a mel filterbank matrix for computing the mel spectrogram.

    Args:
        n_filt: Number of mel filters
        freq_low: Lower frequency bound
        freq_high: Upper frequency bound
        n_fft: FFT size
        fs: Sampling frequency

    Returns:
        filterbank: Mel filterbank matrix of shape (n_fft//2+1, n_filt)
    """

    # Convert Hz to mel
    def hz_to_mel(hz):
        return 1125 * np.log(1 + hz / 700)

    # Convert mel to Hz
    def mel_to_hz(mel):
        return 700 * (np.exp(mel / 1125) - 1)

    # Compute points evenly spaced in mel scale
    lower_mel = hz_to_mel(freq_low)
    higher_mel = hz_to_mel(freq_high)
    mel_points = np.linspace(lower_mel, higher_mel, n_filt + 2)

    # Convert mel points to Hz
    hz_points = mel_to_hz(mel_points)

    # Convert Hz points to FFT bin indices
    bin_indices = np.floor((n_fft + 1) * hz_points / fs).astype(int)

    # Create filterbank matrix
    filterbank = np.zeros((n_fft // 2 + 1, n_filt))

    for i in range(n_filt):
        # For each filter, create a triangular filter
        for j in range(bin_indices[i], bin_indices[i + 1]):
            filterbank[j, i] = (j - bin_indices[i]) / (
                bin_indices[i + 1] - bin_indices[i]
            )

        for j in range(bin_indices[i + 1], bin_indices[i + 2]):
            filterbank[j, i] = (bin_indices[i + 2] - j) / (
                bin_indices[i + 2] - bin_indices[i + 1]
            )

    return filterbank


# Create mel filterbank
mel_filterbank = create_mel_filterbank(
    N_FILTERS, FREQ_LOW, FREQ_HIGH, FFT_SIZE, TARGET_FS
)

# Initialize mel spectrogram image
mel_spectrogram_image = np.zeros((N_FILTERS, N_FILTERS), dtype=np.float32)

# Load the ONNX model
session_options = ort.SessionOptions()
session_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
session_options.intra_op_num_threads = 2
session = ort.InferenceSession("./model/cnn-vad.onnx", session_options)
input_name = session.get_inputs()[0].name
output_name = session.get_outputs()[0].name

# Create thread-safe queues for ML tasks and results
inference_queue = queue.Queue(maxsize=10)  # Queue for pending inference tasks
result_queue = queue.Queue(maxsize=10)  # Queue for inference results
stop_event = threading.Event()  # Event to signal thread termination


# ML worker thread function
def ml_worker():
    """Worker thread function for running ML inference."""
    while not stop_event.is_set():
        try:
            # Try to get a task with timeout to allow checking stop_event periodically
            mel_image = inference_queue.get(timeout=0.1)

            # Run inference
            outputs = session.run(
                [output_name],
                {
                    input_name: mel_image.astype(np.float32).reshape(
                        -1, N_FILTERS, N_FILTERS
                    )
                },
            )[0]

            # Get speech probability score and put in result queue
            current_score = outputs[0][1]
            result_queue.put(current_score)

            # Mark task as done
            inference_queue.task_done()
        except queue.Empty:
            # No pending tasks, just continue
            continue
        except Exception as e:
            print(f"Error in ML worker thread: {e}")
            # Still mark task as done if there was one
            if not inference_queue.empty():
                inference_queue.task_done()


# Start ML worker thread
ml_thread = threading.Thread(target=ml_worker, daemon=True)
ml_thread.start()

# Initialize stream state
initial_state = {
    "buffer": np.zeros(0, dtype=np.float32),  # Audio buffer
    "frames_processed": 0,  # Number of frames processed
    "ewma_score": 0.0,  # EWMA of speech detection score
    "mel_image": np.zeros(
        (N_FILTERS, N_FILTERS), dtype=np.float32
    ),  # Mel spectrogram image
    "inference_pending": False,  # Flag to track if inference is pending
    "last_inference_time": 0,  # Timestamp of last inference
}


def resample_audio(audio, orig_sr, target_sr):
    """
    Resample audio from original sample rate to target sample rate.
    Simple implementation using linear interpolation.

    Args:
        audio: Audio data
        orig_sr: Original sample rate
        target_sr: Target sample rate

    Returns:
        Resampled audio
    """
    if orig_sr == target_sr:
        return audio

    # For more accurate resampling in production, consider using:
    # from scipy import signal
    return signal.resample_poly(audio, target_sr, orig_sr)

    # # Simple linear interpolation (less accurate but faster)
    # duration = len(audio) / orig_sr
    # new_length = int(duration * target_sr)
    # indices = np.linspace(0, len(audio) - 1, new_length)
    # indices = indices.astype(np.int32)
    # return audio[indices]


def process_frame(frame, mel_image):
    """
    Process a single frame of audio data.

    Args:
        frame: Audio frame data
        mel_image: Current mel spectrogram image

    Returns:
        Updated mel spectrogram image
    """
    # 1. Apply FIR filter
    filtered_frame = signal.lfilter(FILTER_COEFFICIENTS, [1.0], frame)

    # Clamp values
    filtered_frame = np.clip(filtered_frame, -1.0, 1.0)

    # 2. Decimate the frame
    decimated_frame = filtered_frame[::DECIMATION_FACTOR]

    # Apply window and pad with zeros to FFT_SIZE
    padded_frame = np.zeros(FFT_SIZE)
    padded_frame[:DECIMATED_FRAME_SIZE] = decimated_frame * window

    # 3. Perform FFT
    fft_result = rfft(padded_frame)

    # Compute power spectrum
    power_spectrum = np.abs(fft_result) ** 2

    # 4. Calculate mel spectrogram
    mel_power = np.dot(power_spectrum[: FFT_SIZE // 2 + 1], mel_filterbank)

    # Log mel spectrogram
    mel_power = np.log(mel_power + 1e-8)

    # Update mel spectrogram image (shift up and add new row at bottom)
    mel_image = np.roll(mel_image, -1, axis=0)
    mel_image[-1] = mel_power

    return mel_image


def detect(state, new_chunk):
    """
    Detects speech in an audio stream using a Voice Activity Detection (VAD) model.

    Args:
        state: Current state dictionary containing:
            - buffer: Audio buffer
            - frames_processed: Number of frames processed so far
            - ewma_score: Exponentially weighted moving average of speech detection score
            - mel_image: Current mel spectrogram image
            - inference_pending: Flag indicating if an inference is pending
            - last_inference_time: Timestamp of last inference
        new_chunk: A tuple containing the sample rate (sr) and the audio data (y).

    Returns:
        A tuple containing the updated state, a string indicating whether speech was detected,
        and an HTML element for the visual indicator.
    """
    # Initialize state if it's the first call
    if state is None:
        state = initial_state.copy()
        state["mel_image"] = np.copy(initial_state["mel_image"])

    sr, y = new_chunk

    # If no audio data, return current state
    if y is None or len(y) == 0:
        return (
            state,
            f"No audio detected (Score: {state['ewma_score']:.2f})",
            generate_indicator(state["ewma_score"]),
        )

    # Pre-processing: Convert to mono if stereo
    if len(y.shape) > 1:
        y = np.mean(y, axis=1)

    # Convert to float32 [-1.0, 1.0]
    y = y.astype(np.float32) / 32768

    # Resample if necessary
    if sr != ORIGINAL_FS:
        y = resample_audio(y, sr, ORIGINAL_FS)

    # Append new audio to buffer
    buffer = np.concatenate([state["buffer"], y])

    # Process frames from buffer
    new_frames_processed = 0
    run_inference = False
    current_time = time.time()

    # Process as many complete frames as possible
    while len(buffer) >= FRAME_SIZE:
        # Extract frame
        frame = buffer[:FRAME_SIZE]
        buffer = buffer[FRAME_STEP:]  # Advance by hop size (50% overlap)

        # Process frame and update mel spectrogram image
        state["mel_image"] = process_frame(frame, state["mel_image"])

        new_frames_processed += 1
        state["frames_processed"] += 1

        # Determine if we should run inference
        if (
            state["frames_processed"] >= INITIAL_FRAMES
            and (state["frames_processed"] - INITIAL_FRAMES) % FRAMES_PER_EVAL == 0
        ):
            run_inference = True

    # Update buffer in state
    state["buffer"] = buffer

    # Check for completed inference results
    if not result_queue.empty():
        # Get the result from the queue
        current_score = result_queue.get()

        # Update EWMA
        if state["ewma_score"] == 0:  # First evaluation
            state["ewma_score"] = current_score
        else:
            state["ewma_score"] = (
                ALPHA * current_score + (1 - ALPHA) * state["ewma_score"]
            )

        # Mark that we're no longer waiting for inference
        state["inference_pending"] = False

    # Run VAD model if criteria are met and no inference is currently pending
    if (
        (
            run_inference
            or (
                state["frames_processed"] >= INITIAL_FRAMES
                and new_frames_processed > 0
                and current_time - state["last_inference_time"] > 0.1  # Rate limiting
            )
        )
        and not state["inference_pending"]
        and not inference_queue.full()
    ):
        # Instead of running inference here, queue it for the worker thread
        inference_queue.put(np.copy(state["mel_image"]))
        state["inference_pending"] = True
        state["last_inference_time"] = current_time

    # Determine result based on EWMA score
    if state["frames_processed"] < INITIAL_FRAMES:
        message = (
            f"Building audio context... ({state['frames_processed']}/{INITIAL_FRAMES})"
        )
        indicator = generate_indicator(0)  # Inactive during initialization
    elif state["ewma_score"] > 0.5:
        message = f"Speech Detected (Score: {state['ewma_score']:.2f})"
        indicator = generate_indicator(state["ewma_score"])
    else:
        message = f"No Speech Detected (Score: {state['ewma_score']:.2f})"
        indicator = generate_indicator(state["ewma_score"])

    return state, message, indicator


def generate_indicator(score):
    """
    Generate an HTML indicator that lights up based on the speech detection score.

    Args:
        score: Speech detection score (0.0 to 1.0)

    Returns:
        HTML string for the visual indicator
    """
    # Set colors based on score
    if score > 0.5:
        # Active - green glow
        brightness = min(100, 50 + int(score * 50))  # 50-100% brightness based on score
        color = f"rgba(144, 219, 130, {score:.1f})"  # Green with opacity based on score
        glow = f"0 0 {int(score * 20)}px rgba(0, 255, 0, {score:.1f})"  # Glow effect
    else:
        # Inactive - dim red
        brightness = max(10, int(score * 50))  # 0-25% brightness based on score
        color = f"rgba(255, 0, 0, {max(0.1, score):.1f})"  # Red with low opacity
        glow = "none"  # No glow when inactive

    # Create HTML for the indicator
    html = f"""
    <div style="display: flex; justify-content: center; margin-top: 10px; margin-bottom: 10px;">
        <div style="
            width: 80px;
            height: 80px;
            border-radius: 50%;
            background-color: {color};
            box-shadow: {glow};
            transition: all 0.3s ease;
            display: flex;
            justify-content: center;
            align-items: center;
            font-weight: bold;
            color: white;
            filter: brightness({brightness}%);
        ">
            {int(score * 100)}%
        </div>
    </div>
    """

    return html


# Create the Gradio interface
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
    gr.Markdown("# Voice Activity Detection")
    gr.Markdown(
        "Speak into your microphone to see the voice activity detection in action."
    )

    # State for maintaining app state between calls
    state = gr.State(None)

    # Audio input
    audio_input = gr.Audio(
        sources=["microphone"],
        streaming=True,
        autoplay=True,
        elem_id="mic_input",
    )

    # Visual indicator and text output
    with gr.Row():
        with gr.Column(scale=1):
            indicator_html = gr.HTML(generate_indicator(0))
        with gr.Column(scale=2):
            text_output = gr.Textbox(label="Detection Result")

    # Set up the processing function
    audio_input.stream(
        detect,
        inputs=[state, audio_input],
        outputs=[state, text_output, indicator_html],
        show_progress=False,
    )

    gr.Markdown("""
    ## How it works
    This app uses a Convolutional Neural Network (CNN) to detect speech in audio.
    - The indicator lights up **green** when speech is detected
    - The indicator turns **red** when no speech is detected
    - The percentage shows the confidence level of speech detection
    - The model and processing is listed in [this paper](https://ieeexplore.ieee.org/abstract/document/8278160)
    """)


# Cleanup function to be called when the app is closed
def cleanup():
    # Signal the worker thread to stop
    stop_event.set()
    # Wait for the thread to finish (with timeout)
    ml_thread.join(timeout=1.0)
    print("ML worker thread stopped")


# Register cleanup handler
atexit.register(cleanup)

# Launch the interface
demo.launch()