File size: 18,679 Bytes
1edf4a7 b8d220c 1edf4a7 b8d220c 1edf4a7 b8d220c 127f197 b8d220c 127f197 b8d220c 127f197 b8d220c 88a948a b8d220c 05c79ef b8d220c aad20a1 b8d220c 127f197 b8d220c 127f197 b8d220c aad20a1 b8d220c aad20a1 b8d220c aad20a1 b8d220c 3ff2374 88a948a b8d220c 1a908ba b8d220c 1a908ba b8d220c 127f197 b8d220c 127f197 b8d220c 4fab0c9 b8d220c 127f197 b8d220c 127f197 b8d220c 88a948a b8d220c 1cf84a1 b8d220c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
import gradio as gr
import spaces
from typing import List
import argparse
import sys
import os
import glob
sys.path.append(os.getcwd())
from llava.llm_agent import LLavaAgent
from PIL import Image
# from CKPT_PTH import LLAVA_MODEL_PATH
import re
import numpy as np
from PIL import Image
import torch
from pytorch_lightning import seed_everything
from diffusers import (
AutoencoderKL,
FlowMatchEulerDiscreteScheduler,
)
from transformers import CLIPTokenizer, PretrainedConfig, T5TokenizerFast
from pipelines.pipeline_dit4sr import StableDiffusion3ControlNetPipeline
from utils.wavelet_color_fix import adain_color_fix
from torchvision import transforms
from model_dit4sr.transformer_sd3 import SD3Transformer2DModel
parser = argparse.ArgumentParser()
parser.add_argument("--pretrained_model_name_or_path", type=str, default='stabilityai/stable-diffusion-3.5-medium')
parser.add_argument("--load_both_models", type=str, default='True') # whether to load both dit4sr_q and dit4sr_f models
parser.add_argument("--transformer_model_name_or_path", type=str, default='acceptee/DiT4SR')
parser.add_argument("--mixed_precision", type=str, default="fp16") # no/fp16/bf16
parser.add_argument("--process_size", type=int, default=512)
parser.add_argument("--vae_decoder_tiled_size", type=int, default=224) # latent size, for 24G
parser.add_argument("--vae_encoder_tiled_size", type=int, default=1024) # image size, for 13G
parser.add_argument("--latent_tiled_size", type=int, default=64)
parser.add_argument("--latent_tiled_overlap", type=int, default=16)
parser.add_argument("--start_point", type=str, choices=['lr', 'noise'], default='noise') # LR Embedding Strategy, choose 'lr latent + 999 steps noise' as diffusion start point.
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--variant",
type=str,
default=None,
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
)
args = parser.parse_args()
# Copied from dreambooth sd3 example
def import_model_class_from_model_name_or_path(
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModelWithProjection":
from transformers import CLIPTextModelWithProjection
return CLIPTextModelWithProjection
elif model_class == "T5EncoderModel":
from transformers import T5EncoderModel
return T5EncoderModel
else:
raise ValueError(f"{model_class} is not supported.")
# Copied from dreambooth sd3 example
def load_text_encoders(class_one, class_two, class_three, args):
text_encoder_one = class_one.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
)
text_encoder_two = class_two.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant
)
text_encoder_three = class_three.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder_3", revision=args.revision, variant=args.variant
)
return text_encoder_one, text_encoder_two, text_encoder_three
def load_dit4sr_q_pipeline(args, device):
# Load scheduler, tokenizer and models.
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
args.pretrained_model_name_or_path, subfolder="scheduler"
)
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="vae",
)
transformer = SD3Transformer2DModel.from_pretrained(
args.transformer_model_name_or_path, subfolder="dit4sr_q/transformer"
)
# controlnet = SD3ControlNetModel.from_pretrained(args.controlnet_model_name_or_path, subfolder='controlnet')
# Load the tokenizer
tokenizer_one = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=args.revision,
)
tokenizer_two = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer_2",
revision=args.revision,
)
tokenizer_three = T5TokenizerFast.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer_3",
revision=args.revision,
)
# import correct text encoder class
text_encoder_cls_one = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, args.revision
)
text_encoder_cls_two = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2"
)
text_encoder_cls_three = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_3"
)
text_encoder_one, text_encoder_two, text_encoder_three = load_text_encoders(
text_encoder_cls_one, text_encoder_cls_two, text_encoder_cls_three, args
)
# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
text_encoder_three.requires_grad_(False)
transformer.requires_grad_(False)
# Get the validation pipeline
validation_pipeline = StableDiffusion3ControlNetPipeline(
vae=vae, text_encoder=text_encoder_one, text_encoder_2=text_encoder_two, text_encoder_3=text_encoder_three,
tokenizer=tokenizer_one, tokenizer_2=tokenizer_two, tokenizer_3=tokenizer_three,
transformer=transformer, scheduler=scheduler,
)
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu and cast to weight_dtype
text_encoder_one.to(device, dtype=weight_dtype)
text_encoder_two.to(device, dtype=weight_dtype)
text_encoder_three.to(device, dtype=weight_dtype)
vae.to(device, dtype=weight_dtype)
transformer.to(device, dtype=weight_dtype)
return validation_pipeline
def load_dit4sr_f_pipeline(args, device):
# Load scheduler, tokenizer and models.
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
args.pretrained_model_name_or_path, subfolder="scheduler"
)
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="vae",
)
transformer = SD3Transformer2DModel.from_pretrained(
args.transformer_model_name_or_path, subfolder="dit4sr_f/transformer"
)
# controlnet = SD3ControlNetModel.from_pretrained(args.controlnet_model_name_or_path, subfolder='controlnet')
# Load the tokenizer
tokenizer_one = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=args.revision,
)
tokenizer_two = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer_2",
revision=args.revision,
)
tokenizer_three = T5TokenizerFast.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer_3",
revision=args.revision,
)
# import correct text encoder class
text_encoder_cls_one = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, args.revision
)
text_encoder_cls_two = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2"
)
text_encoder_cls_three = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_3"
)
text_encoder_one, text_encoder_two, text_encoder_three = load_text_encoders(
text_encoder_cls_one, text_encoder_cls_two, text_encoder_cls_three, args
)
# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
text_encoder_three.requires_grad_(False)
transformer.requires_grad_(False)
# Get the validation pipeline
validation_pipeline = StableDiffusion3ControlNetPipeline(
vae=vae, text_encoder=text_encoder_one, text_encoder_2=text_encoder_two, text_encoder_3=text_encoder_three,
tokenizer=tokenizer_one, tokenizer_2=tokenizer_two, tokenizer_3=tokenizer_three,
transformer=transformer, scheduler=scheduler,
)
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu and cast to weight_dtype
text_encoder_one.to(device, dtype=weight_dtype)
text_encoder_two.to(device, dtype=weight_dtype)
text_encoder_three.to(device, dtype=weight_dtype)
vae.to(device, dtype=weight_dtype)
transformer.to(device, dtype=weight_dtype)
return validation_pipeline
def remove_focus_sentences(text):
# 使用正则表达式按照 . ? ! 分割,并且保留分隔符本身
# re.split(pattern, string) 如果 pattern 中带有捕获组(),分隔符也会保留在结果列表中
prohibited_words = ['focus', 'focal', 'prominent', 'close-up', 'black and white', 'blur', 'depth', 'dense', 'locate', 'position']
parts = re.split(r'([.?!])', text)
filtered_sentences = []
i = 0
while i < len(parts):
# sentence 可能是句子主体,punctuation 是该句子结尾的标点
sentence = parts[i]
punctuation = parts[i+1] if (i+1 < len(parts)) else ''
# 组合为完整句子,避免漏掉结尾标点
full_sentence = sentence + punctuation
full_sentence_lower = full_sentence.lower()
skip = False
for word in prohibited_words:
if word.lower() in full_sentence_lower:
skip = True
break
# 如果该句子不包含任何禁用词,则保留
if not skip:
filtered_sentences.append(full_sentence)
# 跳过已经处理的句子和标点
i += 2
# 根据需要选择如何重新拼接;这里去掉多余空格并直接拼接
return "".join(filtered_sentences).strip()
# if torch.cuda.device_count() >= 2:
# LLaVA_device = 'cuda:0'
# dit4sr_device = 'cuda:1'
# elif torch.cuda.device_count() == 1:
# LLaVA_device = 'cuda:0'
# dit4sr_device = 'cuda:0'
# else:
# raise ValueError('Currently support CUDA only.')
LLaVA_device = 'cuda:0'
dit4sr_device = 'cuda:0'
llava_agent = LLavaAgent("liuhaotian/llava-v1.5-13b", LLaVA_device, load_8bit=True, load_4bit=False)
# Get the validation pipeline - prioritize dit4sr_f
pipeline_dit4sr_f = load_dit4sr_f_pipeline(args, dit4sr_device)
# Only load dit4sr_q if load_both_models is True
pipeline_dit4sr_q = None
if args.load_both_models == 'True':
pipeline_dit4sr_q = load_dit4sr_q_pipeline(args, dit4sr_device)
@spaces.GPU
@torch.no_grad()
def process_llava(
input_image):
llama_prompt = llava_agent.gen_image_caption([input_image])[0]
llama_prompt = remove_focus_sentences(llama_prompt)
return llama_prompt
@spaces.GPU
@torch.no_grad()
def process_sr(
input_image: Image.Image,
user_prompt: str,
positive_prompt: str,
negative_prompt: str,
num_inference_steps: int,
scale_factor: int,
cfg_scale: float,
seed: int,
model_choice: str,
) -> Image.Image:
process_size = 512
resize_preproc = transforms.Compose([
transforms.Resize(process_size, interpolation=transforms.InterpolationMode.BILINEAR),
])
if input_image.mode != 'RGB':
input_image = input_image.convert('RGB')
seed_everything(seed)
generator = torch.Generator(device=dit4sr_device)
generator.manual_seed(seed)
validation_prompt = f"{user_prompt} {positive_prompt}"
ori_width, ori_height = input_image.size
resize_flag = False
rscale = scale_factor
input_image = input_image.resize((int(input_image.size[0] * rscale), int(input_image.size[1] * rscale)))
if min(input_image.size) < process_size:
input_image = resize_preproc(input_image)
input_image = input_image.resize((input_image.size[0] // 8 * 8, input_image.size[1] // 8 * 8))
width, height = input_image.size
resize_flag = True #
# Choose pipeline based on model selection - prioritize dit4sr_f
if model_choice == "dit4sr_q" and pipeline_dit4sr_q is not None:
pipeline = pipeline_dit4sr_q
else:
pipeline = pipeline_dit4sr_f
weight_dtype = torch.float32
if args.mixed_precision == "fp16":
weight_dtype = torch.float16
elif args.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
try:
with torch.autocast(device_type='cuda', dtype=weight_dtype, enabled=(args.mixed_precision != "no")):
image = pipeline(
prompt=validation_prompt, control_image=input_image, num_inference_steps=num_inference_steps, generator=generator, height=height, width=width,
guidance_scale=cfg_scale, negative_prompt=negative_prompt, start_point=args.start_point, latent_tiled_size=args.latent_tiled_size, latent_tiled_overlap=args.latent_tiled_overlap,
args=args,
).images[0]
if True: # alpha<1.0:
image = adain_color_fix(image, input_image)
if resize_flag:
image = image.resize((ori_width * rscale, ori_height * rscale))
except Exception as e:
print(f"Error during inference: {e}")
image = Image.new(mode="RGB", size=(512, 512))
raise gr.Error(f"Error during inference: {e}", duration=None)
return image
Intro = \
"""
## DiT4SR: Taming Diffusion Transformer for Real-World Image Super-Resolution
[🕸️ Project Page](https://adam-duan.github.io/projects/dit4sr) • [📄 Paper](https://arxiv.org/abs/2503.23580) • [💻 Code](https://github.com/Adam-duan/DiT4SR) • [📦 Model](https://huggingface.co/acceptee/DiT4SR) • [📊 Dataset](https://huggingface.co/datasets/acceptee/NKUSR8K)
"""
# Generate prompt text based on model availability
if args.load_both_models == 'True':
Prompt = \
"""
First, select your preferred model (fidelity first or quality first). \\
Then, click \"Run LLAVA\" to generate an initial prompt based on the input image. \\
Modify the prompt for higher accuracy if needed. \\
Finally, click \"Run DiT4SR\" to generate the SR result." \
"""
else:
Prompt = \
"""
Click \"Run LLAVA\" to generate an initial prompt based on the input image. \\
Modify the prompt for higher accuracy if needed. \\
Finally, click \"Run DiT4SR\" to generate the SR result using fidelity first model." \
"""
exaple_images = sorted(glob.glob('examples/*.png'))
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown(Intro)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil")
user_prompt = gr.Textbox(label="User Prompt", value="")
# Only show model selection if load_both_models is True
if args.load_both_models == 'True':
model_choice = gr.Dropdown(
label="Model Selection",
choices=[("Quality First", "dit4sr_q"), ("Fidelity First", "dit4sr_f")],
value="dit4sr_f",
info="Choose between Quality First and Fidelity First models"
)
else:
# Hidden component with default value when only one model is available
model_choice = gr.Dropdown(
label="Model Selection",
choices=["dit4sr_f"],
value="dit4sr_f",
visible=False
)
with gr.Accordion("Options", open=False):
positive_prompt = gr.Textbox(label="Positive Prompt", value='Cinematic, perfect without deformations, ultra HD, '
'camera, detailed photo, realistic maximum, 32k, Color.')
negative_prompt = gr.Textbox(
label="Negative Prompt",
value='motion blur, noisy, dotted, pointed, deformed, lowres, chaotic'
'CG Style, 3D render, unreal engine, blurring, dirty, messy, '
'worst quality, low quality, watermark, signature, jpeg artifacts. '
)
cfg_scale = gr.Slider(label="Classifier Free Guidance Scale (Set a value larger than 1 to enable it!)", minimum=0.1, maximum=10.0, value=7.0, step=0.1)
num_inference_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, value=20, step=1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=0)
scale_factor = gr.Number(label="SR Scale", value=4)
gr.Examples(examples=exaple_images, inputs=[input_image])
with gr.Column():
result_gallery = gr.Image(label="Output", show_label=False, elem_id="gallery", type="pil", format="png")
with gr.Row():
run_llava_button = gr.Button(value="Run LLAVA")
run_sr_button = gr.Button(value="Run DiT4SR")
gr.Markdown(Prompt)
inputs = [
input_image,
user_prompt,
positive_prompt,
negative_prompt,
num_inference_steps,
scale_factor,
cfg_scale,
seed,
model_choice,
]
run_llava_button.click(fn=process_llava, inputs=[input_image], outputs=[user_prompt])
run_sr_button.click(fn=process_sr, inputs=inputs, outputs=[result_gallery])
block.launch()
|