# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List, Optional, Tuple import torch import torch.nn.functional as F from torch import nn import numpy as np from diffusers.utils import deprecate, logging from diffusers.utils.torch_utils import maybe_allow_in_graph from diffusers.models.activations import GEGLU, GELU, ApproximateGELU, FP32SiLU, SwiGLU from diffusers.models.attention_processor import Attention from diffusers.models.embeddings import SinusoidalPositionalEmbedding from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm, SD35AdaLayerNormZeroX def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int): # "feed_forward_chunk_size" can be used to save memory if hidden_states.shape[chunk_dim] % chunk_size != 0: raise ValueError( f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." ) num_chunks = hidden_states.shape[chunk_dim] // chunk_size ff_output = torch.cat( [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)], dim=chunk_dim, ) return ff_output class FeedForward(nn.Module): r""" A feed-forward layer. Parameters: dim (`int`): The number of channels in the input. dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. bias (`bool`, defaults to True): Whether to use a bias in the linear layer. """ def __init__( self, dim: int, dim_out: Optional[int] = None, mult: int = 4, dropout: float = 0.0, activation_fn: str = "geglu", final_dropout: bool = False, inner_dim=None, bias: bool = True, ): super().__init__() if inner_dim is None: inner_dim = int(dim * mult) dim_out = dim_out if dim_out is not None else dim if activation_fn == "gelu": act_fn = GELU(dim, inner_dim, bias=bias) if activation_fn == "gelu-approximate": act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias) elif activation_fn == "geglu": act_fn = GEGLU(dim, inner_dim, bias=bias) elif activation_fn == "geglu-approximate": act_fn = ApproximateGELU(dim, inner_dim, bias=bias) elif activation_fn == "swiglu": act_fn = SwiGLU(dim, inner_dim, bias=bias) self.net = nn.ModuleList([]) # project in self.net.append(act_fn) # project dropout self.net.append(nn.Dropout(dropout)) # project out self.net.append(nn.Linear(inner_dim, dim_out, bias=bias)) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(dropout)) def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) for module in self.net: hidden_states = module(hidden_states) return hidden_states class FeedForwardControl(nn.Module): r""" A feed-forward layer. Parameters: dim (`int`): The number of channels in the input. dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. bias (`bool`, defaults to True): Whether to use a bias in the linear layer. """ def __init__( self, dim: int, dim_out: Optional[int] = None, mult: int = 4, dropout: float = 0.0, activation_fn: str = "geglu", final_dropout: bool = False, inner_dim=None, bias: bool = True, ): super().__init__() if inner_dim is None: inner_dim = int(dim * mult) dim_out = dim_out if dim_out is not None else dim if activation_fn == "gelu": act_fn = GELU(dim, inner_dim, bias=bias) if activation_fn == "gelu-approximate": act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias) elif activation_fn == "geglu": act_fn = GEGLU(dim, inner_dim, bias=bias) elif activation_fn == "geglu-approximate": act_fn = ApproximateGELU(dim, inner_dim, bias=bias) elif activation_fn == "swiglu": act_fn = SwiGLU(dim, inner_dim, bias=bias) self.net = nn.ModuleList([]) # project in self.net.append(act_fn) # project dropout self.net.append(nn.Dropout(dropout)) # project out self.net.append(nn.Linear(inner_dim, dim_out, bias=bias)) self.control_conv = zero_module(nn.Conv2d(inner_dim, inner_dim, 3, stride=1, padding=1, groups=inner_dim)) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(dropout)) def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) for i, module in enumerate(self.net): hidden_states = module(hidden_states) if i == 1: hidden_states, hidden_states_control_org = hidden_states.chunk(2, dim=1) B, N, C = hidden_states.shape h = w = int(np.sqrt(N)) assert h * w == N hidden_states_control = hidden_states_control_org.reshape(B, h, w, C).permute(0, 3, 1, 2) hidden_states_control = self.control_conv(hidden_states_control) hidden_states_control = hidden_states_control.reshape(B, C, N).permute(0, 2, 1) hidden_states = hidden_states + 1.2 * hidden_states_control hidden_states = torch.cat([hidden_states, hidden_states_control_org], dim=1) return hidden_states logger = logging.get_logger(__name__) @maybe_allow_in_graph class JointTransformerBlock(nn.Module): r""" A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. Reference: https://arxiv.org/abs/2403.03206 Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the processing of `context` conditions. """ def __init__(self, dim, num_attention_heads, attention_head_dim, context_pre_only=False, qk_norm: Optional[str] = None, use_dual_attention: bool = False): super().__init__() self.use_dual_attention = use_dual_attention self.context_pre_only = context_pre_only context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero" if use_dual_attention: self.norm1 = SD35AdaLayerNormZeroX(dim) else: self.norm1 = AdaLayerNormZero(dim) if context_norm_type == "ada_norm_continous": self.norm1_context = AdaLayerNormContinuous( dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm" ) elif context_norm_type == "ada_norm_zero": self.norm1_context = AdaLayerNormZero(dim) else: raise ValueError( f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`" ) if hasattr(F, "scaled_dot_product_attention"): processor = JointAttnProcessor2_0() else: raise ValueError( "The current PyTorch version does not support the `scaled_dot_product_attention` function." ) self.attn = AttentionZero( query_dim=dim, cross_attention_dim=None, added_kv_proj_dim=dim, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, context_pre_only=context_pre_only, bias=True, processor=processor, qk_norm=qk_norm, eps=1e-6, ) if use_dual_attention: self.attn2 = AttentionZero( query_dim=dim, cross_attention_dim=None, added_kv_proj_dim=dim, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, context_pre_only=context_pre_only, bias=True, processor=processor, qk_norm=qk_norm, eps=1e-6, ) else: self.attn2 = None self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff = FeedForwardControl(dim=dim, dim_out=dim, activation_fn="gelu-approximate") if not context_pre_only: self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") else: self.norm2_context = None self.ff_context = None # let chunk size default to None self._chunk_size = None self._chunk_dim = 0 # Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): # Sets chunk feed-forward self._chunk_size = chunk_size self._chunk_dim = dim def forward( self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor ): if self.use_dual_attention: norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, norm_hidden_states2, gate_msa2 = self.norm1( hidden_states, emb=temb ) else: norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) if self.context_pre_only: norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb) else: norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( encoder_hidden_states, emb=temb ) # Attention. attn_output, context_attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, ) # Process attention outputs for the `hidden_states`. attn_output = gate_msa.unsqueeze(1) * attn_output hidden_states = hidden_states + attn_output if self.use_dual_attention: attn_output2 = self.attn2(hidden_states=norm_hidden_states2) attn_output2 = gate_msa2.unsqueeze(1) * attn_output2 hidden_states = hidden_states + attn_output2 norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) else: ff_output = self.ff(norm_hidden_states) ff_output = gate_mlp.unsqueeze(1) * ff_output hidden_states = hidden_states + ff_output # Process attention outputs for the `encoder_hidden_states`. if self.context_pre_only: encoder_hidden_states = None else: context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output encoder_hidden_states = encoder_hidden_states + context_attn_output norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory context_ff_output = _chunked_feed_forward( self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size ) else: context_ff_output = self.ff_context(norm_encoder_hidden_states) encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output return encoder_hidden_states, hidden_states class AttentionZero(Attention): def __init__(self, query_dim, cross_attention_dim, added_kv_proj_dim, dim_head, heads, out_dim, context_pre_only, bias, processor, qk_norm, eps): super(AttentionZero, self).__init__( query_dim=query_dim, cross_attention_dim=cross_attention_dim, added_kv_proj_dim=added_kv_proj_dim, dim_head=dim_head, heads=heads, out_dim=out_dim, context_pre_only=context_pre_only, bias=bias, processor=processor, qk_norm=qk_norm, eps=1e-6,) self.to_q_control = zero_module(nn.Linear(self.query_dim, self.inner_dim, bias=self.use_bias)) self.to_k_control = zero_module(nn.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=self.use_bias)) self.to_v_control = zero_module(nn.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=self.use_bias)) self.to_out_control = nn.Linear(self.inner_dim, self.out_dim, bias=True) self.to_out_control.weight.data.copy_(self.to_out[0].weight.data) self.to_out_control.bias.data.copy_(self.to_out[0].bias.data) def zero_module(module): for p in module.parameters(): nn.init.zeros_(p) return module class JointAttnProcessor2_0: """Attention processor used typically in processing the SD3-like self-attention projections.""" def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, *args, **kwargs, ) -> torch.FloatTensor: residual = hidden_states batch_size = hidden_states.shape[0] hidden_states, hidden_states_control = hidden_states.chunk(2, dim=1) hidden_states_control_res = hidden_states_control # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # `control` projections. query_control = attn.to_q_control(attn.to_q(hidden_states_control)) key_control = attn.to_k_control(attn.to_k(hidden_states_control)) value_control = attn.to_v_control(attn.to_v(hidden_states_control)) query_control = query_control.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key_control = key_control.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value_control = value_control.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) query_control = attn.norm_q(query_control) if attn.norm_k is not None: key = attn.norm_k(key) key_control = attn.norm_k(key) if encoder_hidden_states is not None: # `context` projections. encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) # attention query = torch.cat([query, query_control, encoder_hidden_states_query_proj], dim=2) key = torch.cat([key, key_control, encoder_hidden_states_key_proj], dim=2) value = torch.cat([value, value_control, encoder_hidden_states_value_proj], dim=2) else : query = torch.cat([query, query_control], dim=2) key = torch.cat([key, key_control], dim=2) value = torch.cat([value, value_control], dim=2) hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: # Split the attention outputs. hidden_states, encoder_hidden_states = ( hidden_states[:, : residual.shape[1]], hidden_states[:, residual.shape[1] :], ) if not attn.context_pre_only: encoder_hidden_states = attn.to_add_out(encoder_hidden_states) hidden_states, hidden_states_control = hidden_states.chunk(2, dim=1) # TODO hidden_states_control = hidden_states_control + hidden_states_control_res # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) hidden_states_control = attn.to_out_control(hidden_states_control) hidden_states = torch.cat([hidden_states, hidden_states_control], dim=1) if encoder_hidden_states is not None: return hidden_states, encoder_hidden_states else : return hidden_states