Spaces:
Paused
Paused
File size: 10,936 Bytes
341438f 3366cca e0fbca6 3366cca e0fbca6 341438f 3366cca 25e8b74 3366cca e0fbca6 3366cca e0fbca6 7c0be64 e0fbca6 3366cca e0fbca6 3366cca ce2fb73 3366cca e0fbca6 ae70ea2 25e8b74 e0fbca6 ae70ea2 cd1c851 e0fbca6 c54f540 e0fbca6 ae70ea2 e0fbca6 25e8b74 e0fbca6 25e8b74 e0fbca6 25e8b74 e0fbca6 25e8b74 3366cca e0fbca6 3366cca bb4dd0f e0fbca6 6696eda e0fbca6 3366cca 6696eda 3366cca 6696eda 3366cca ce2fb73 6035dc8 3366cca 6696eda 3366cca 6696eda 3366cca 12a7e75 ce2fb73 12a7e75 ce2fb73 3366cca 341438f 3366cca 341438f e0fbca6 af05866 3366cca 7c0be64 12a7e75 341438f 4e76f1b 12a7e75 3366cca 341438f 4e76f1b 341438f 6035dc8 ce2fb73 6035dc8 ce2fb73 6035dc8 341438f 3366cca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
from main import extract_frames, run_eval #run
from PIL import Image
import numpy as np
from skimage.metrics import structural_similarity as ssim
from skimage.metrics import peak_signal_noise_ratio as psnr
import torch
import torchvision.transforms as transforms
import lpips
from pytorch_fid.fid_score import calculate_fid_given_paths
from cdfvd import fvd
import os
import json
import cv2
from huggingface_hub import snapshot_download
outdir = 'outputs/' #'/data/out/'
# Convert PIL to numpy
def pil_to_np(img):
return np.array(img).astype(np.float32) / 255.0
def save_mp4(images, name):
width, height = images[0].size
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for MP4
video = cv2.VideoWriter(name, fourcc, 12, (width, height))
for image in images:
img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
video.write(img)
video.release()
# SSIM
def compute_ssim(img1, img2):
img1_np = pil_to_np(img1)
img2_np = pil_to_np(img2)
h, w = img1_np.shape[:2]
min_dim = min(h, w)
win_size = min(7, min_dim if min_dim % 2 == 1 else min_dim - 1) # ensure odd
return ssim(img1_np, img2_np, win_size=win_size, channel_axis=-1, data_range=1.0)
# PSNR
def compute_psnr(img1, img2):
img1_np = pil_to_np(img1)
img2_np = pil_to_np(img2)
return psnr(img1_np, img2_np, data_range=1.0)
# LPIPS
lpips_model = lpips.LPIPS(net='alex')
lpips_transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5]*3, [0.5]*3)
])
def compute_lpips(img1, img2):
img1_tensor = lpips_transform(img1).unsqueeze(0)
img2_tensor = lpips_transform(img2).unsqueeze(0)
return lpips_model(img1_tensor, img2_tensor).item()
def trans(x):
# if greyscale images add channel
if x.shape[-3] == 1:
x = x.repeat(1, 1, 3, 1, 1)
# permute BTCHW -> BCTHW
x = x.permute(0, 2, 1, 3, 4)
return x
def compute_fvd(item, gt_imgs, results):
os.makedirs('temp/gt', exist_ok=True)
os.makedirs('temp/result', exist_ok=True)
save_mp4(gt_imgs, "temp/gt/gt.mp4")
save_mp4(results, "temp/result/result.mp4")
evaluator = fvd.cdfvd('i3d', ckpt_path=None, device='cuda', n_real=1, n_fake=1)
evaluator.compute_real_stats(evaluator.load_videos('temp/gt', data_type='video_folder'))
evaluator.compute_fake_stats(evaluator.load_videos('temp/result', data_type='video_folder'))
score = evaluator.compute_fvd_from_stats()
evaluator.offload_model_to_cpu()
print(score)
return score
def compute_fidx(item, gt_imgs, results):
os.makedirs('temp/'+item+'_gt', exist_ok=True)
os.makedirs('temp/'+item, exist_ok=True)
c = 0
for img in gt_imgs:
img.save('temp/'+item+'_gt/'+str(c)+'.png')
c = c+1
c = 0
for img in gt_imgs:
img.save('temp/'+item+'/'+str(c)+'.png')
c = c+1
fid = calculate_fid_given_paths(['temp/'+item+'_gt', 'temp/'+item], batch_size=8, device='cuda', dims=2048)
return fid
# FID: Save images to temp folders for FID calculation
def compute_fid(img1, img2):
os.makedirs('temp/img1', exist_ok=True)
os.makedirs('temp/img2', exist_ok=True)
img1.save('temp/img1/0.png')
img2.save('temp/img2/0.png')
fid = calculate_fid_given_paths(['temp/img1', 'temp/img2'], batch_size=1, device='cuda', dims=2048)
return fid
def get_score(item, image_paths, video_path, train_steps=100, inference_steps=10, fps=12, bg_remove=False):
images = []
results = []
results_base = []
gt_frames = []
max_frame_count = 200
if os.path.isdir(outdir+item):
for filename in os.listdir(outdir+item):
img = Image.open(outdir+item+'/'+filename)
if filename.startswith('result_'):
results.append(img)
elif filename.startswith('base_'):
results_base.append(img)
elif filename.startswith('frame_'):
gt_frames.append(img)
#results = results[:max_frame_count]
#results_base = results_base[:max_frame_count]
#gt_frames = gt_frames[:max_frame_count]
else:
if not isinstance(image_paths[0], str):
images = image_paths
else:
for path in image_paths:
print(path)
img = Image.open(path)
images.append([img])
gt_frames = extract_frames(video_path, fps)
gt_frames = gt_frames[:max_frame_count]
for f in gt_frames:
f.thumbnail((512,512))
#results = run(images, video_path, train_steps=100, inference_steps=10, fps=12, bg_remove=False, finetune=True)
results, results_base = run_eval(images, video_path, train_steps=100, inference_steps=10, fps=12, modelId="fine_tuned_pcdms", img_width=1920, img_height=1080, bg_remove=False, resize_inputs=False)
os.makedirs(outdir+item, exist_ok=True)
for i, frame in enumerate(gt_frames):
frame.save(outdir+item+"/frame_"+str(i)+".png")
for i, result in enumerate(results):
result.save(outdir+item+"/result_"+str(i)+".png")
for i, result in enumerate(results_base):
result.save(outdir+item+"/base_"+str(i)+".png")
ssim = []
psnr = []
lpips = []
fid = []
ssim2 = []
psnr2 = []
lpips2 = []
fid2 = []
c = 0
#print(len(gt_frames), len(results), len(results_base))
for gt, result, base in zip(gt_frames, results, results_base):
ssim.append(float(compute_ssim(gt, result)))
psnr.append(float(compute_psnr(gt, result)))
lpips.append(float(compute_lpips(gt, result)))
ssim2.append(float(compute_ssim(gt, base)))
psnr2.append(float(compute_psnr(gt, base)))
lpips2.append(float(compute_lpips(gt, base)))
if c<50:
print(c)
fid.append(float(compute_fid(gt, result)))
fid2.append(float(compute_fid(gt, base)))
c = c+1
#fvd = float(compute_fvd(item, gt_frames, results))
#fvd2 = float(compute_fvd(item, gt_frames, results_base))
print("SSIM:", sum(ssim)/len(ssim))
print("PSNR:", sum(psnr)/len(psnr))
print("LPIPS:", sum(lpips)/len(lpips))
print("FID:", sum(fid)/len(fid))
#print("FVD:", fvd)
print('baseline:')
print("SSIM:", sum(ssim2)/len(ssim2))
print("PSNR:", sum(psnr2)/len(psnr2))
print("LPIPS:", sum(lpips2)/len(lpips2))
print("FID:", sum(fid2)/len(fid2))
#print("FVD:", fvd2)
metrics = {}
metrics[item] = {'ft': {}, 'base': {}, 'n_frames': len(gt_frames), 'complexity': len(images)}
metrics[item]['ft']['ssim'] = {'avg': sum(ssim)/len(ssim), 'vals': ssim}
metrics[item]['ft']['psnr'] = {'avg': sum(psnr)/len(psnr), 'vals': psnr}
metrics[item]['ft']['lpips'] = {'avg': sum(lpips)/len(lpips), 'vals': lpips}
metrics[item]['ft']['fid'] = {'avg': sum(fid)/len(fid), 'vals': fid}
#metrics[item]['ft']['fvd'] = fvd
metrics[item]['base']['ssim'] = {'avg': sum(ssim2)/len(ssim2), 'vals': ssim2}
metrics[item]['base']['psnr'] = {'avg': sum(psnr2)/len(psnr2), 'vals': psnr2}
metrics[item]['base']['lpips'] = {'avg': sum(lpips2)/len(lpips2), 'vals': lpips2}
metrics[item]['base']['fid'] = {'avg': sum(fid2)/len(fid2), 'vals': fid2}
#metrics[item]['base']['fvd'] = fvd2
#print(metrics)
return metrics[item]
def get_files(directory_path):
"""
Returns a list of all files in the specified directory.
"""
files = []
for entry in os.listdir(directory_path):
full_path = os.path.join(directory_path, entry)
if os.path.isfile(full_path):
files.append(entry)
return files
def run_evaluate():
print("run_evaluate")
snapshot_download(repo_id="acmyu/KeyframesAI-eval", local_dir="test", repo_type="dataset")
with open('/data/metrics.json', 'r') as file:
metrics = json.load(file)
items = os.listdir('test')
items = [it for it in items if not it[0]=='.' and not os.path.isfile('test/'+it)]
print(items)
#items = ['sidewalk'] #['sidewalk', 'aaa', 'azri', 'dead', 'frankgirl', 'kobold', 'ramona', 'renee', 'walk', 'woody']
for item in items:
if item in metrics:
continue
print(item)
try:
files = get_files('test/'+item)
images = list(filter(lambda x: not x.endswith('.mp4'), files))
images = ['test/'+item+'/'+img for img in images]
videos = [x for x in files if x.endswith('.mp4')]
print(images, videos)
if len(videos) == 1:
metrics[item] = get_score(item, images, 'test/'+item+'/'+videos[0])
#get_score(item, ['test/'+item+'/1.jpg', 'test/'+item+'/2.jpg', 'test/'+item+'/3.jpg'], 'test/'+item+'/v.mp4')
with open('/data/metrics.json', "w", encoding="utf-8") as json_file:
json.dump(metrics, json_file, ensure_ascii=False, indent=4)
else:
print('Error: mp4 not found')
except Exception as e:
print("Error", item, e)
ssim = []
psnr = []
lpips = []
fid = []
ssim2 = []
psnr2 = []
lpips2 = []
fid2 = []
for item in metrics.keys():
ssim.append(metrics[item]['ft']['ssim']['avg'])
psnr.append(metrics[item]['ft']['psnr']['avg'])
lpips.append(metrics[item]['ft']['lpips']['avg'])
fid.append(metrics[item]['ft']['fid']['avg'])
ssim2.append(metrics[item]['base']['ssim']['avg'])
psnr2.append(metrics[item]['base']['psnr']['avg'])
lpips2.append(metrics[item]['base']['lpips']['avg'])
fid2.append(metrics[item]['base']['fid']['avg'])
print(item)
print("SSIM:", metrics[item]['ft']['ssim']['avg'], metrics[item]['base']['ssim']['avg'])
print("PSNR:", metrics[item]['ft']['psnr']['avg'], metrics[item]['base']['psnr']['avg'])
print("LPIPS:", metrics[item]['ft']['lpips']['avg'], metrics[item]['base']['lpips']['avg'])
print("FID:", metrics[item]['ft']['fid']['avg'], metrics[item]['base']['fid']['avg'])
print('Results:')
print("SSIM:", sum(ssim)/len(ssim))
print("PSNR:", sum(psnr)/len(psnr))
print("LPIPS:", sum(lpips)/len(lpips))
print("FID:", sum(fid)/len(fid))
print('baseline:')
print("SSIM:", sum(ssim2)/len(ssim2))
print("PSNR:", sum(psnr2)/len(psnr2))
print("LPIPS:", sum(lpips2)/len(lpips2))
print("FID:", sum(fid2)/len(fid2))
|