File size: 10,936 Bytes
341438f
3366cca
 
 
 
 
 
 
 
 
e0fbca6
3366cca
 
e0fbca6
341438f
3366cca
25e8b74
 
 
3366cca
 
 
 
e0fbca6
 
 
 
 
 
 
 
 
 
3366cca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0fbca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c0be64
 
e0fbca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3366cca
 
 
 
 
 
e0fbca6
3366cca
 
 
ce2fb73
3366cca
e0fbca6
 
 
ae70ea2
25e8b74
 
 
e0fbca6
 
 
 
 
 
ae70ea2
cd1c851
 
 
 
e0fbca6
c54f540
 
 
 
 
 
 
 
 
 
e0fbca6
ae70ea2
e0fbca6
 
 
 
 
 
25e8b74
e0fbca6
 
25e8b74
e0fbca6
 
25e8b74
e0fbca6
 
25e8b74
3366cca
 
 
 
 
 
 
 
 
e0fbca6
 
3366cca
 
 
 
 
 
 
 
 
bb4dd0f
e0fbca6
 
 
 
 
6696eda
 
e0fbca6
3366cca
 
 
 
 
6696eda
3366cca
 
 
 
 
6696eda
3366cca
ce2fb73
6035dc8
3366cca
 
 
 
6696eda
3366cca
 
 
 
6696eda
3366cca
12a7e75
ce2fb73
12a7e75
ce2fb73
3366cca
 
 
341438f
 
 
 
 
 
 
 
 
 
3366cca
 
341438f
e0fbca6
af05866
3366cca
7c0be64
12a7e75
 
341438f
4e76f1b
 
12a7e75
3366cca
341438f
 
 
4e76f1b
341438f
6035dc8
 
 
 
 
 
 
 
ce2fb73
6035dc8
ce2fb73
 
 
6035dc8
 
 
 
341438f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3366cca
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
from main import extract_frames, run_eval #run

from PIL import Image
import numpy as np
from skimage.metrics import structural_similarity as ssim
from skimage.metrics import peak_signal_noise_ratio as psnr
import torch
import torchvision.transforms as transforms
import lpips
from pytorch_fid.fid_score import calculate_fid_given_paths
from cdfvd import fvd
import os
import json
import cv2
from huggingface_hub import snapshot_download

outdir = 'outputs/' #'/data/out/'


# Convert PIL to numpy
def pil_to_np(img):
    return np.array(img).astype(np.float32) / 255.0

def save_mp4(images, name):
    width, height = images[0].size
    fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for MP4
    video = cv2.VideoWriter(name, fourcc, 12, (width, height))

    for image in images:
        img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
        video.write(img)
    video.release()

# SSIM
def compute_ssim(img1, img2):
    img1_np = pil_to_np(img1)
    img2_np = pil_to_np(img2)

    h, w = img1_np.shape[:2]
    min_dim = min(h, w)
    win_size = min(7, min_dim if min_dim % 2 == 1 else min_dim - 1)  # ensure odd

    return ssim(img1_np, img2_np, win_size=win_size, channel_axis=-1, data_range=1.0)

# PSNR
def compute_psnr(img1, img2):
    img1_np = pil_to_np(img1)
    img2_np = pil_to_np(img2)
    return psnr(img1_np, img2_np, data_range=1.0)

# LPIPS
lpips_model = lpips.LPIPS(net='alex')
lpips_transform = transforms.Compose([
    transforms.Resize((256, 256)),
    transforms.ToTensor(),
    transforms.Normalize([0.5]*3, [0.5]*3)
])
def compute_lpips(img1, img2):
    
    img1_tensor = lpips_transform(img1).unsqueeze(0)
    img2_tensor = lpips_transform(img2).unsqueeze(0)
    return lpips_model(img1_tensor, img2_tensor).item()


def trans(x):
    # if greyscale images add channel
    if x.shape[-3] == 1:
        x = x.repeat(1, 1, 3, 1, 1)

    # permute BTCHW -> BCTHW
    x = x.permute(0, 2, 1, 3, 4) 

    return x


def compute_fvd(item, gt_imgs, results):
    os.makedirs('temp/gt', exist_ok=True)
    os.makedirs('temp/result', exist_ok=True)

    save_mp4(gt_imgs, "temp/gt/gt.mp4")
    save_mp4(results, "temp/result/result.mp4")

    evaluator = fvd.cdfvd('i3d', ckpt_path=None, device='cuda', n_real=1, n_fake=1)
    evaluator.compute_real_stats(evaluator.load_videos('temp/gt', data_type='video_folder'))
    evaluator.compute_fake_stats(evaluator.load_videos('temp/result', data_type='video_folder'))
    score = evaluator.compute_fvd_from_stats()
    evaluator.offload_model_to_cpu()
    print(score)
    return score


def compute_fidx(item, gt_imgs, results):
    os.makedirs('temp/'+item+'_gt', exist_ok=True)
    os.makedirs('temp/'+item, exist_ok=True)
    c = 0
    for img in gt_imgs:
        img.save('temp/'+item+'_gt/'+str(c)+'.png')
        c = c+1
    c = 0
    for img in gt_imgs:
        img.save('temp/'+item+'/'+str(c)+'.png')
        c = c+1

    fid = calculate_fid_given_paths(['temp/'+item+'_gt', 'temp/'+item], batch_size=8, device='cuda', dims=2048)
    return fid

# FID: Save images to temp folders for FID calculation
def compute_fid(img1, img2):
    os.makedirs('temp/img1', exist_ok=True)
    os.makedirs('temp/img2', exist_ok=True)
    img1.save('temp/img1/0.png')
    img2.save('temp/img2/0.png')
    fid = calculate_fid_given_paths(['temp/img1', 'temp/img2'], batch_size=1, device='cuda', dims=2048)
    return fid


def get_score(item, image_paths, video_path, train_steps=100, inference_steps=10, fps=12, bg_remove=False):
    images = []
    results = []
    results_base = []
    gt_frames = []
    max_frame_count = 200
    if os.path.isdir(outdir+item):
        for filename in os.listdir(outdir+item):
            img = Image.open(outdir+item+'/'+filename)
            if filename.startswith('result_'):
                results.append(img)
            elif filename.startswith('base_'):
                results_base.append(img)
            elif filename.startswith('frame_'):
                gt_frames.append(img)
        
        #results = results[:max_frame_count]
        #results_base = results_base[:max_frame_count]
        #gt_frames = gt_frames[:max_frame_count]

    else:
        
        if not isinstance(image_paths[0], str):
            images = image_paths
        else:
            for path in image_paths:
                print(path)
                img = Image.open(path)
                images.append([img])


        gt_frames = extract_frames(video_path, fps)
        gt_frames = gt_frames[:max_frame_count]
        for f in gt_frames:
            f.thumbnail((512,512))

        #results = run(images, video_path, train_steps=100, inference_steps=10, fps=12, bg_remove=False, finetune=True)
        results, results_base = run_eval(images, video_path, train_steps=100, inference_steps=10, fps=12, modelId="fine_tuned_pcdms", img_width=1920, img_height=1080, bg_remove=False, resize_inputs=False)

        os.makedirs(outdir+item, exist_ok=True)

        for i, frame in enumerate(gt_frames):
            frame.save(outdir+item+"/frame_"+str(i)+".png")

        for i, result in enumerate(results):
            result.save(outdir+item+"/result_"+str(i)+".png")
            
        for i, result in enumerate(results_base):
            result.save(outdir+item+"/base_"+str(i)+".png")
    
    ssim = []
    psnr = []
    lpips = []
    fid = []
    ssim2 = []
    psnr2 = []
    lpips2 = []
    fid2 = []
    c = 0
    #print(len(gt_frames), len(results), len(results_base))
    for gt, result, base in zip(gt_frames, results, results_base):
        ssim.append(float(compute_ssim(gt, result)))
        psnr.append(float(compute_psnr(gt, result)))
        lpips.append(float(compute_lpips(gt, result)))
        
        ssim2.append(float(compute_ssim(gt, base)))
        psnr2.append(float(compute_psnr(gt, base)))
        lpips2.append(float(compute_lpips(gt, base)))
        
        if c<50:
            print(c)
            fid.append(float(compute_fid(gt, result)))
            fid2.append(float(compute_fid(gt, base)))
        c = c+1
        
    #fvd = float(compute_fvd(item, gt_frames, results))
    #fvd2 = float(compute_fvd(item, gt_frames, results_base))
    
    
    print("SSIM:", sum(ssim)/len(ssim))
    print("PSNR:", sum(psnr)/len(psnr))
    print("LPIPS:", sum(lpips)/len(lpips))
    print("FID:", sum(fid)/len(fid))
    #print("FVD:", fvd)
    print('baseline:')
    print("SSIM:", sum(ssim2)/len(ssim2))
    print("PSNR:", sum(psnr2)/len(psnr2))
    print("LPIPS:", sum(lpips2)/len(lpips2))
    print("FID:", sum(fid2)/len(fid2))
    #print("FVD:", fvd2)
    
    metrics = {}
    metrics[item] = {'ft': {}, 'base': {}, 'n_frames': len(gt_frames), 'complexity': len(images)}
    metrics[item]['ft']['ssim'] = {'avg': sum(ssim)/len(ssim), 'vals': ssim}
    metrics[item]['ft']['psnr'] = {'avg': sum(psnr)/len(psnr), 'vals': psnr}
    metrics[item]['ft']['lpips'] = {'avg': sum(lpips)/len(lpips), 'vals': lpips}
    metrics[item]['ft']['fid'] = {'avg': sum(fid)/len(fid), 'vals': fid}
    #metrics[item]['ft']['fvd'] = fvd
    metrics[item]['base']['ssim'] = {'avg': sum(ssim2)/len(ssim2), 'vals': ssim2}
    metrics[item]['base']['psnr'] = {'avg': sum(psnr2)/len(psnr2), 'vals': psnr2}
    metrics[item]['base']['lpips'] = {'avg': sum(lpips2)/len(lpips2), 'vals': lpips2}
    metrics[item]['base']['fid'] = {'avg': sum(fid2)/len(fid2), 'vals': fid2}
    #metrics[item]['base']['fvd'] = fvd2
    
    #print(metrics)
    return metrics[item]

    
    
    
    
def get_files(directory_path):
    """

    Returns a list of all files in the specified directory.

    """
    files = []
    for entry in os.listdir(directory_path):
        full_path = os.path.join(directory_path, entry)
        if os.path.isfile(full_path):
            files.append(entry)
    return files


def run_evaluate():
    print("run_evaluate")
    snapshot_download(repo_id="acmyu/KeyframesAI-eval", local_dir="test", repo_type="dataset")

    with open('/data/metrics.json', 'r') as file:
        metrics = json.load(file)

    items = os.listdir('test') 
    items = [it for it in items if not it[0]=='.' and not os.path.isfile('test/'+it)]
    print(items)
    #items = ['sidewalk'] #['sidewalk', 'aaa', 'azri', 'dead', 'frankgirl', 'kobold', 'ramona', 'renee', 'walk', 'woody']
    
    for item in items: 
        if item in metrics:
            continue
        print(item)
        
        try:
            files = get_files('test/'+item)
            images = list(filter(lambda x: not x.endswith('.mp4'), files))
            images = ['test/'+item+'/'+img for img in images]
            videos = [x for x in files if x.endswith('.mp4')]
            print(images, videos)

            if len(videos) == 1:
                metrics[item] = get_score(item, images, 'test/'+item+'/'+videos[0])
                #get_score(item, ['test/'+item+'/1.jpg', 'test/'+item+'/2.jpg', 'test/'+item+'/3.jpg'], 'test/'+item+'/v.mp4')

                with open('/data/metrics.json', "w", encoding="utf-8") as json_file:
                    json.dump(metrics, json_file, ensure_ascii=False, indent=4)
            else:
                print('Error: mp4 not found')
        except Exception as e:
            print("Error", item, e)


    ssim = []
    psnr = []
    lpips = []
    fid = []
    ssim2 = []
    psnr2 = []
    lpips2 = []
    fid2 = []
    for item in metrics.keys():
        ssim.append(metrics[item]['ft']['ssim']['avg'])
        psnr.append(metrics[item]['ft']['psnr']['avg'])
        lpips.append(metrics[item]['ft']['lpips']['avg'])
        fid.append(metrics[item]['ft']['fid']['avg'])
        
        ssim2.append(metrics[item]['base']['ssim']['avg'])
        psnr2.append(metrics[item]['base']['psnr']['avg'])
        lpips2.append(metrics[item]['base']['lpips']['avg'])
        fid2.append(metrics[item]['base']['fid']['avg'])

        print(item)
        print("SSIM:", metrics[item]['ft']['ssim']['avg'], metrics[item]['base']['ssim']['avg'])
        print("PSNR:", metrics[item]['ft']['psnr']['avg'], metrics[item]['base']['psnr']['avg'])
        print("LPIPS:", metrics[item]['ft']['lpips']['avg'], metrics[item]['base']['lpips']['avg'])
        print("FID:", metrics[item]['ft']['fid']['avg'], metrics[item]['base']['fid']['avg'])

    print('Results:')
    print("SSIM:", sum(ssim)/len(ssim))
    print("PSNR:", sum(psnr)/len(psnr))
    print("LPIPS:", sum(lpips)/len(lpips))
    print("FID:", sum(fid)/len(fid))
    print('baseline:')
    print("SSIM:", sum(ssim2)/len(ssim2))
    print("PSNR:", sum(psnr2)/len(psnr2))
    print("LPIPS:", sum(lpips2)/len(lpips2))
    print("FID:", sum(fid2)/len(fid2))