Spaces:
Paused
Paused
File size: 20,193 Bytes
3366cca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 |
import os
import pathlib
import torch
import numpy as np
import skimage
from imageio import imread
from scipy import linalg
from torch.nn.functional import adaptive_avg_pool2d
from skimage.metrics import structural_similarity as compare_ssim
from skimage.metrics import peak_signal_noise_ratio as compare_psnr
import glob
import argparse
import matplotlib.pyplot as plt
from inception import InceptionV3
#from scripts.PerceptualSimilarity.models import dist_model as dm
import lpips
import pandas as pd
import json
import imageio
import cv2
print(skimage.__version__)
class FID():
"""docstring for FID
Calculates the Frechet Inception Distance (FID) to evalulate GANs
The FID metric calculates the distance between two distributions of images.
Typically, we have summary statistics (mean & covariance matrix) of one
of these distributions, while the 2nd distribution is given by a GAN.
When run as a stand-alone program, it compares the distribution of
images that are stored as PNG/JPEG at a specified location with a
distribution given by summary statistics (in pickle format).
The FID is calculated by assuming that X_1 and X_2 are the activations of
the pool_3 layer of the inception net for generated samples and real world
samples respectivly.
See --help to see further details.
Code apapted from https://github.com/bioinf-jku/TTUR to use PyTorch instead
of Tensorflow
Copyright 2018 Institute of Bioinformatics, JKU Linz
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
def __init__(self):
self.dims = 2048
self.batch_size = 128
self.cuda = True
self.verbose=False
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[self.dims]
self.model = InceptionV3([block_idx])
if self.cuda:
# TODO: put model into specific GPU
self.model.cuda()
def __call__(self, images, gt_path):
""" images: list of the generated image. The values must lie between 0 and 1.
gt_path: the path of the ground truth images. The values must lie between 0 and 1.
"""
if not os.path.exists(gt_path):
raise RuntimeError('Invalid path: %s' % gt_path)
print('calculate gt_path statistics...')
m1, s1 = self.compute_statistics_of_path(gt_path, self.verbose)
print('calculate generated_images statistics...')
m2, s2 = self.calculate_activation_statistics(images, self.verbose)
fid_value = self.calculate_frechet_distance(m1, s1, m2, s2)
return fid_value
def calculate_from_disk(self, generated_path, gt_path, img_size):
"""
"""
if not os.path.exists(gt_path):
raise RuntimeError('Invalid path: %s' % gt_path)
if not os.path.exists(generated_path):
raise RuntimeError('Invalid path: %s' % generated_path)
print ('exp-path - '+generated_path)
print('calculate gt_path statistics...')
m1, s1 = self.compute_statistics_of_path(gt_path, self.verbose, img_size)
print('calculate generated_path statistics...')
m2, s2 = self.compute_statistics_of_path(generated_path, self.verbose, img_size)
print('calculate frechet distance...')
fid_value = self.calculate_frechet_distance(m1, s1, m2, s2)
print('fid_distance %f' % (fid_value))
return fid_value
def compute_statistics_of_path(self, path , verbose, img_size):
size_flag = '{}_{}'.format(img_size[0], img_size[1])
npz_file = os.path.join(path, size_flag + '_statistics.npz')
if os.path.exists(npz_file):
f = np.load(npz_file)
m, s = f['mu'][:], f['sigma'][:]
f.close()
else:
path = pathlib.Path(path)
files = list(path.glob('*.jpg')) + list(path.glob('*.png'))
imgs = (np.array([(cv2.resize(imread(str(fn)).astype(np.float32),img_size,interpolation=cv2.INTER_CUBIC)) for fn in files]))/255.0
# Bring images to shape (B, 3, H, W)
imgs = imgs.transpose((0, 3, 1, 2))
# Rescale images to be between 0 and 1
m, s = self.calculate_activation_statistics(imgs, verbose)
np.savez(npz_file, mu=m, sigma=s)
return m, s
def calculate_activation_statistics(self, images, verbose):
"""Calculation of the statistics used by the FID.
Params:
-- images : Numpy array of dimension (n_images, 3, hi, wi). The values
must lie between 0 and 1.
-- model : Instance of inception model
-- batch_size : The images numpy array is split into batches with
batch size batch_size. A reasonable batch size
depends on the hardware.
-- dims : Dimensionality of features returned by Inception
-- cuda : If set to True, use GPU
-- verbose : If set to True and parameter out_step is given, the
number of calculated batches is reported.
Returns:
-- mu : The mean over samples of the activations of the pool_3 layer of
the inception model.
-- sigma : The covariance matrix of the activations of the pool_3 layer of
the inception model.
"""
act = self.get_activations(images, verbose)
mu = np.mean(act, axis=0)
sigma = np.cov(act, rowvar=False)
return mu, sigma
def get_activations(self, images, verbose=False):
"""Calculates the activations of the pool_3 layer for all images.
Params:
-- images : Numpy array of dimension (n_images, 3, hi, wi). The values
must lie between 0 and 1.
-- model : Instance of inception model
-- batch_size : the images numpy array is split into batches with
batch size batch_size. A reasonable batch size depends
on the hardware.
-- dims : Dimensionality of features returned by Inception
-- cuda : If set to True, use GPU
-- verbose : If set to True and parameter out_step is given, the number
of calculated batches is reported.
Returns:
-- A numpy array of dimension (num images, dims) that contains the
activations of the given tensor when feeding inception with the
query tensor.
"""
self.model.eval()
d0 = images.shape[0]
if self.batch_size > d0:
print(('Warning: batch size is bigger than the data size. '
'Setting batch size to data size'))
self.batch_size = d0
n_batches = d0 // self.batch_size
n_used_imgs = n_batches * self.batch_size
pred_arr = np.empty((n_used_imgs, self.dims))
for i in range(n_batches):
if verbose:
print('\rPropagating batch %d/%d' % (i + 1, n_batches))
# end='', flush=True)
start = i * self.batch_size
end = start + self.batch_size
batch = torch.from_numpy(images[start:end]).type(torch.FloatTensor)
# batch = Variable(batch, volatile=True)
if self.cuda:
batch = batch.cuda()
pred = self.model(batch)[0]
# If model output is not scalar, apply global spatial average pooling.
# This happens if you choose a dimensionality not equal 2048.
if pred.shape[2] != 1 or pred.shape[3] != 1:
pred = adaptive_avg_pool2d(pred, output_size=(1, 1))
pred_arr[start:end] = pred.cpu().data.numpy().reshape(self.batch_size, -1)
if verbose:
print(' done')
return pred_arr
def calculate_frechet_distance(self, mu1, sigma1, mu2, sigma2, eps=1e-6):
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.
Params:
-- mu1 : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations, precalculated on an
representive data set.
-- sigma1: The covariance matrix over activations for generated samples.
-- sigma2: The covariance matrix over activations, precalculated on an
representive data set.
Returns:
-- : The Frechet Distance.
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, \
'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, \
'Training and test covariances have different dimensions'
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return (diff.dot(diff) + np.trace(sigma1) +
np.trace(sigma2) - 2 * tr_covmean)
class Reconstruction_Metrics():
def __init__(self, metric_list=['ssim', 'psnr', 'l1', 'mae'], data_range=1, win_size=51, multichannel=True):
self.data_range = data_range
self.win_size = win_size
self.multichannel = multichannel
for metric in metric_list:
if metric in ['ssim', 'psnr', 'l1', 'mae']:
setattr(self, metric, True)
else:
print('unsupport reconstruction metric: %s'%metric)
def __call__(self, inputs, gts):
"""
inputs: the generated image, size (b,c,w,h), data range(0, data_range)
gts: the ground-truth image, size (b,c,w,h), data range(0, data_range)
"""
result = dict()
[b,n,w,h] = inputs.size()
inputs = inputs.view(b*n, w, h).detach().cpu().numpy().astype(np.float32).transpose(1,2,0)
gts = gts.view(b*n, w, h).detach().cpu().numpy().astype(np.float32).transpose(1,2,0)
if hasattr(self, 'ssim'):
ssim_value = compare_ssim(inputs, gts, data_range=self.data_range,
win_size=self.win_size, multichannel=self.multichannel)
result['ssim'] = ssim_value
if hasattr(self, 'psnr'):
psnr_value = compare_psnr(inputs, gts, self.data_range)
result['psnr'] = psnr_value
if hasattr(self, 'l1'):
l1_value = compare_l1(inputs, gts)
result['l1'] = l1_value
if hasattr(self, 'mae'):
mae_value = compare_mae(inputs, gts)
result['mae'] = mae_value
return result
def calculate_from_disk(self, inputs, gts, save_path=None, img_size=(176,256), sort=True, debug=0):
"""
inputs: .txt files, floders, image files (string), image files (list)
gts: .txt files, floders, image files (string), image files (list)
"""
if sort:
input_image_list = sorted(get_image_list(inputs))
gt_image_list = sorted(get_image_list(gts))
else:
input_image_list = get_image_list(inputs)
gt_image_list = get_image_list(gts)
size_flag = '{}_{}'.format(img_size[0], img_size[1])
npz_file = os.path.join(save_path, size_flag + '_metrics.npz')
if os.path.exists(npz_file):
f = np.load(npz_file)
psnr,ssim,ssim_256,mae,l1=f['psnr'],f['ssim'],f['ssim_256'],f['mae'],f['l1']
else:
psnr = []
ssim = []
ssim_256 = []
mae = []
l1 = []
names = []
for index in range(len(input_image_list)):
name = os.path.basename(input_image_list[index])
names.append(name)
img_gt = (cv2.resize(imread(str(gt_image_list[index])).astype(np.float32), img_size,interpolation=cv2.INTER_CUBIC)) /255.0
img_pred = (cv2.resize(imread(str(input_image_list[index])).astype(np.float32), img_size,interpolation=cv2.INTER_CUBIC)) / 255.0
if debug != 0:
plt.subplot('121')
plt.imshow(img_gt)
plt.title('Groud truth')
plt.subplot('122')
plt.imshow(img_pred)
plt.title('Output')
plt.show()
psnr.append(compare_psnr(img_gt, img_pred, data_range=self.data_range))
ssim.append(compare_ssim(img_gt, img_pred, data_range=self.data_range,
win_size=self.win_size,multichannel=self.multichannel, channel_axis=2))
mae.append(compare_mae(img_gt, img_pred))
l1.append(compare_l1(img_gt, img_pred))
img_gt_256 = img_gt*255.0
img_pred_256 = img_pred*255.0
ssim_256.append(compare_ssim(img_gt_256, img_pred_256, gaussian_weights=True, sigma=1.2,
use_sample_covariance=False, multichannel=True, channel_axis=2,
data_range=img_pred_256.max() - img_pred_256.min()))
if np.mod(index, 200) == 0:
print(
str(index) + ' images processed',
"PSNR: %.4f" % round(np.mean(psnr), 4),
"SSIM_256: %.4f" % round(np.mean(ssim_256), 4),
"MAE: %.4f" % round(np.mean(mae), 4),
"l1: %.4f" % round(np.mean(l1), 4),
)
if save_path:
np.savez(save_path + '/' + size_flag + '_metrics.npz', psnr=psnr, ssim=ssim, ssim_256=ssim_256, mae=mae, l1=l1, names=names)
print(
"PSNR: %.4f" % round(np.mean(psnr), 4),
"PSNR Variance: %.4f" % round(np.var(psnr), 4),
"SSIM_256: %.4f" % round(np.mean(ssim_256), 4),
"SSIM_256 Variance: %.4f" % round(np.var(ssim_256), 4),
"MAE: %.4f" % round(np.mean(mae), 4),
"MAE Variance: %.4f" % round(np.var(mae), 4),
"l1: %.4f" % round(np.mean(l1), 4),
"l1 Variance: %.4f" % round(np.var(l1), 4)
)
dic = {"psnr":[round(np.mean(psnr), 6)],
"psnr_variance": [round(np.var(psnr), 6)],
"ssim_256": [round(np.mean(ssim_256), 6)],
"ssim_256_variance": [round(np.var(ssim_256), 6)],
"mae": [round(np.mean(mae), 6)],
"mae_variance": [round(np.var(mae), 6)],
"l1": [round(np.mean(l1), 6)],
"l1_variance": [round(np.var(l1), 6)] }
return dic
def get_image_list(flist):
if isinstance(flist, list):
return flist
# flist: image file path, image directory path, text file flist path
if isinstance(flist, str):
if os.path.isdir(flist):
flist = list(glob.glob(flist + '/*.jpg')) + list(glob.glob(flist + '/*.png'))
flist.sort()
return flist
if os.path.isfile(flist):
try:
return np.genfromtxt(flist, dtype=np.str)
except:
return [flist]
print('can not read files from %s return empty list'%flist)
return []
def compare_l1(img_true, img_test):
img_true = img_true.astype(np.float32)
img_test = img_test.astype(np.float32)
return np.mean(np.abs(img_true - img_test))
def compare_mae(img_true, img_test):
img_true = img_true.astype(np.float32)
img_test = img_test.astype(np.float32)
return np.sum(np.abs(img_true - img_test)) / np.sum(img_true + img_test)
def preprocess_path_for_deform_task(gt_path, distorted_path):
distorted_image_list = sorted(get_image_list(distorted_path))
gt_list=[]
distorated_list=[]
for distorted_image in distorted_image_list:
image = os.path.basename(distorted_image)[1:]
image = image.split('_to_')[-1]
gt_image = gt_path + '/' + image.replace('jpg', 'png')
if not os.path.isfile(gt_image):
print(distorted_image, gt_image)
print('=====')
continue
gt_list.append(gt_image)
distorated_list.append(distorted_image)
return gt_list, distorated_list
class LPIPS():
def __init__(self, use_gpu=True):
self.model = lpips.LPIPS(net='alex').eval().cuda()
self.use_gpu=use_gpu
def __call__(self, image_1, image_2):
"""
image_1: images with size (n, 3, w, h) with value [-1, 1]
image_2: images with size (n, 3, w, h) with value [-1, 1]
"""
result = self.model.forward(image_1, image_2)
return result
def calculate_from_disk(self, path_1, path_2,img_size, batch_size=64, verbose=False, sort=True):
if sort:
files_1 = sorted(get_image_list(path_1))
files_2 = sorted(get_image_list(path_2))
else:
files_1 = get_image_list(path_1)
files_2 = get_image_list(path_2)
results=[]
d0 = len(files_1)
if batch_size > d0:
print(('Warning: batch size is bigger than the data size. '
'Setting batch size to data size'))
batch_size = d0
n_batches = d0 // batch_size
for i in range(n_batches):
if verbose:
print('\rPropagating batch %d/%d' % (i + 1, n_batches))
# end='', flush=True)
start = i * batch_size
end = start + batch_size
imgs_1 = np.array([cv2.resize(imread(str(fn)).astype(np.float32),img_size,interpolation=cv2.INTER_CUBIC)/255.0 for fn in files_1[start:end]])
imgs_2 = np.array([cv2.resize(imread(str(fn)).astype(np.float32),img_size,interpolation=cv2.INTER_CUBIC)/255.0 for fn in files_2[start:end]])
imgs_1 = imgs_1.transpose((0, 3, 1, 2))
imgs_2 = imgs_2.transpose((0, 3, 1, 2))
img_1_batch = torch.from_numpy(imgs_1).type(torch.FloatTensor)
img_2_batch = torch.from_numpy(imgs_2).type(torch.FloatTensor)
if self.use_gpu:
img_1_batch = img_1_batch.cuda()
img_2_batch = img_2_batch.cuda()
with torch.no_grad():
result = self.model.forward(img_1_batch, img_2_batch)
results.append(result)
distance = torch.cat(results,0)[:,0,0,0].mean()
print('lpips: %.3f'%distance)
return distance
|