File size: 8,429 Bytes
3366cca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import glob
import os
import torch
from torch import nn
from PIL import Image
import numpy as np
from diffusers import UniPCMultistepScheduler
from src.models.stage2_inpaint_unet_2d_condition import Stage2_InapintUNet2DConditionModel

from torchvision import transforms
from diffusers.models.controlnet import ControlNetConditioningEmbedding
from transformers import CLIPImageProcessor
from transformers import Dinov2Model
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel,ControlNetModel,DDIMScheduler
from src.pipelines.PCDMs_pipeline import PCDMsPipeline
#from single_extract_pose import inference_pose


class ImageProjModel_p(torch.nn.Module):
    """SD model with image prompt"""

    def __init__(self, in_dim, hidden_dim, out_dim, dropout = 0.):
        super().__init__()

        self.net = nn.Sequential(
            nn.Linear(in_dim, hidden_dim),
            nn.GELU(),
            nn.Dropout(dropout),
            nn.LayerNorm(hidden_dim),
            nn.Linear(hidden_dim, out_dim),
            nn.Dropout(dropout)
        )

    def forward(self, x): 
        return self.net(x)

class ImageProjModel(torch.nn.Module):
    """SD model with image prompt"""
    def __init__(self, in_dim, hidden_dim, out_dim, dropout = 0.):
        super().__init__()

        self.net = nn.Sequential(
            nn.Linear(in_dim, hidden_dim),
            nn.GELU(),
            nn.Dropout(dropout),
            nn.LayerNorm(hidden_dim),
            nn.Linear(hidden_dim, out_dim),
            nn.Dropout(dropout)
        )

    def forward(self, x):  
        return self.net(x)
        
class SDModel(torch.nn.Module):
    """SD model with image prompt"""
    def __init__(self, unet) -> None:
        super().__init__()
        self.image_proj_model = ImageProjModel(in_dim=1536, hidden_dim=768, out_dim=1024).to(device).to(dtype=torch.float16)
        self.unet = unet
        self.pose_proj = ControlNetConditioningEmbedding(
            conditioning_embedding_channels=320,
            block_out_channels=(16, 32, 96, 256),
            conditioning_channels=3).to(device).to(dtype=torch.float16)


def image_grid(imgs, rows, cols):
    assert len(imgs) == rows * cols
    w, h = imgs[0].size
    print(w, h)
    grid = Image.new("RGB", size=(cols * w, rows * h))
    grid_w, grid_h = grid.size

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i % cols * w, i // cols * h))
    return grid

def load_mydict(model_ckpt_path):
    model_sd = torch.load(model_ckpt_path, map_location="cpu")["module"]

    image_proj_model_dict = {}
    pose_proj_dict = {}
    unet_dict = {}
    for k in model_sd.keys():
        if k.startswith("pose_proj"):
            pose_proj_dict[k.replace("pose_proj.", "")] = model_sd[k]

        elif k.startswith("image_proj_model_p"):
            image_proj_model_dict[k.replace("image_proj_model_p.", "")] = model_sd[k]
        elif k.startswith("image_proj_model"):
            image_proj_model_dict[k.replace("image_proj_model.", "")] = model_sd[k]


        elif k.startswith("unet"):
            unet_dict[k.replace("unet.", "")] = model_sd[k]
        else:
            print(k)
    return image_proj_model_dict, pose_proj_dict, unet_dict


        
device = "cuda"
pretrained_model_name_or_path ="stabilityai/stable-diffusion-2-1-base"
image_encoder_path = "facebook/dinov2-giant"
#model_ckpt_path = "./pcdms_ckpt.pt"   # ckpt path
model_ckpt_path = 'fine_tuned_pcdms.pt'


clip_image_processor = CLIPImageProcessor()
img_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize([0.5], [0.5]),
])

generator = torch.Generator(device=device).manual_seed(42)
unet = Stage2_InapintUNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16,subfolder="unet",in_channels=9, low_cpu_mem_usage=False, ignore_mismatched_sizes=True).to(device)
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path,subfolder="vae").to(device, dtype=torch.float16)
image_encoder = Dinov2Model.from_pretrained(image_encoder_path).to(device, dtype=torch.float16)
noise_scheduler = DDIMScheduler(
    num_train_timesteps=1000,
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    clip_sample=False,
    set_alpha_to_one=False,
    steps_offset=1,
)

image_proj_model = ImageProjModel(in_dim=1536, hidden_dim=768, out_dim=1024).to(device).to(dtype=torch.float16)
pose_proj_model = ControlNetConditioningEmbedding(
    conditioning_embedding_channels=320,
    block_out_channels=(16, 32, 96, 256),
    conditioning_channels=3).to(device).to(dtype=torch.float16)


# load weight
image_proj_model_dict, pose_proj_dict, unet_dict = load_mydict(model_ckpt_path)
image_proj_model.load_state_dict(image_proj_model_dict)
pose_proj_model.load_state_dict(pose_proj_dict)
unet.load_state_dict(unet_dict)


pipe = PCDMsPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet,  torch_dtype=torch.float16, scheduler=noise_scheduler,feature_extractor=None,safety_checker=None).to(device)

print('====================== model load finish ===================')






num_samples = 1
image_size = (512, 512)
s_img_path = 'imgs/sm.png' # input image 1
target_pose_img = 'imgs/target_pose.png' # input image 2
#target_pose_img = 'imgs/dance40.png' # input image 2


s_img = Image.open(s_img_path).convert("RGB").resize(image_size, Image.BICUBIC)
black_image = Image.new("RGB", s_img.size, (0, 0, 0)).resize(image_size, Image.BICUBIC)

s_img_t_mask = Image.new("RGB", (s_img.width * 2, s_img.height))
s_img_t_mask.paste(s_img, (0, 0))
s_img_t_mask.paste(black_image, (s_img.width, 0))

s_pose = Image.open('imgs/sm_pose.jpg').convert("RGB").resize(image_size, Image.BICUBIC) #inference_pose(s_img_path, image_size=(image_size[1], image_size[0])).resize(image_size, Image.BICUBIC)
print('source image width: {}, height: {}'.format(s_pose.width, s_pose.height))
t_pose = Image.open(target_pose_img).convert("RGB").resize((image_size), Image.BICUBIC)

st_pose = Image.new("RGB", (s_pose.width * 2, s_pose.height))
st_pose.paste(s_pose, (0, 0))
st_pose.paste(t_pose, (s_pose.width, 0))


clip_s_img = clip_image_processor(images=s_img, return_tensors="pt").pixel_values
vae_image = torch.unsqueeze(img_transform(s_img_t_mask), 0)
cond_st_pose = torch.unsqueeze(img_transform(st_pose), 0)

mask1 = torch.ones((1, 1, int(image_size[0] / 8), int(image_size[1] / 8))).to(device, dtype=torch.float16)
mask0 = torch.zeros((1, 1, int(image_size[0] / 8), int(image_size[1] / 8))).to(device, dtype=torch.float16)
mask = torch.cat([mask1, mask0], dim=3)


with torch.inference_mode():
    cond_pose = pose_proj_model(cond_st_pose.to(dtype=torch.float16, device=device))
    simg_mask_latents = pipe.vae.encode(vae_image.to(device, dtype=torch.float16)).latent_dist.sample()
    simg_mask_latents = simg_mask_latents * 0.18215

    images_embeds = image_encoder(clip_s_img.to(device, dtype=torch.float16)).last_hidden_state
    image_prompt_embeds = image_proj_model(images_embeds)
    uncond_image_prompt_embeds = image_proj_model(torch.zeros_like(images_embeds))

bs_embed, seq_len, _ = image_prompt_embeds.shape
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)

output, _ = pipe(
    simg_mask_latents= simg_mask_latents,
    mask = mask,
    cond_pose = cond_pose,
    prompt_embeds=image_prompt_embeds,
    negative_prompt_embeds=uncond_image_prompt_embeds,
    height=image_size[1],
    width=image_size[0]*2,
    num_images_per_prompt=num_samples,
    guidance_scale=2.0,
    generator=generator,
    num_inference_steps=50,
)

output = output.images[-1]

save_output = []
result = output.crop((image_size[0], 0, image_size[0] * 2, image_size[1]))
save_output.append(result.resize((352, 512), Image.BICUBIC))
save_output.insert(0, t_pose.resize((352, 512), Image.BICUBIC))
save_output.insert(0, s_img.resize((352, 512), Image.BICUBIC))
grid = image_grid(save_output, 1, 3)
grid.save("out.png")