Spaces:
Paused
Paused
File size: 6,513 Bytes
3366cca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import os
import torch
from PIL import Image
from src.models.stage1_prior_transformer import Stage1_PriorTransformer
from src.pipelines.stage1_prior_pipeline import Stage1_PriorPipeline
import torch.nn.functional as F
from transformers import (
CLIPVisionModelWithProjection,
CLIPImageProcessor,
)
import argparse
import numpy as np
import torch.multiprocessing as mp
import json
import time
# Read a text file and convert the coordinates into a tensor
def read_coordinates_file(file_path):
coordinates_list = []
with open(file_path, 'r') as file:
for line in file:
x, y = map(float, line.strip().split())
coordinates_list.extend([x, y])
coordinates_tensor = torch.tensor(coordinates_list, dtype=torch.float32).view(1, -1)
return coordinates_tensor
def split_list_into_chunks(lst, n):
chunk_size = len(lst) // n
chunks = [lst[i:i + chunk_size] for i in range(0, len(lst), chunk_size)]
if len(chunks) > n:
last_chunk = chunks.pop()
chunks[-1].extend(last_chunk)
return chunks
def main(args):
device = torch.device("cuda")
generator = torch.Generator(device=device).manual_seed(args.seed_number)
# save path
save_dir = "{}/guidancescale{}_seed{}_numsteps{}/".format(args.save_path, args.guidance_scale, args.seed_number, args.num_inference_steps)
if not os.path.exists(save_dir):
os.makedirs(save_dir, exist_ok=True)
# prepare data aug
clip_image_processor = CLIPImageProcessor()
# prepare model
model_ckpt = args.weights_name
pipe = Stage1_PriorPipeline.from_pretrained(args.pretrained_model_name_or_path).to(device)
pipe.prior= Stage1_PriorTransformer.from_pretrained(args.pretrained_model_name_or_path, subfolder="prior", num_embeddings=2,embedding_dim=1024, low_cpu_mem_usage=False, ignore_mismatched_sizes=True).to(device)
prior_dict = torch.load(model_ckpt, map_location="cpu")["module"]
pipe.prior.load_state_dict(prior_dict)
pipe.enable_xformers_memory_efficient_attention()
image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.image_encoder_path).eval().to(device)
print('====================== model load finish ===================')
# start test
start_time = time.time()
#prepare data
s_img_path = 'imgs/sm.png'
t_img_path = 'imgs/target.png'
s_pose_path = args.pose_path + select_test_data['source_image'].replace('.jpg', '.txt')
t_pose_path = (args.pose_path + select_test_data["target_image"].replace(".jpg", ".txt"))
# image_pair
s_image = Image.open(s_img_path).convert("RGB").resize((args.img_width, args.img_height), Image.BICUBIC)
#t_image = Image.open(t_img_path).convert("RGB").resize((args.img_width, args.img_height), Image.BICUBIC)
s_pose = read_coordinates_file(s_pose_path).to(device).unsqueeze(1)
t_pose = read_coordinates_file(t_pose_path).to(device).unsqueeze(1)
clip_s_image = clip_image_processor(images=s_image, return_tensors="pt").pixel_values
#clip_t_image = clip_image_processor(images=t_image, return_tensors="pt").pixel_values
with torch.no_grad():
s_img_embed = (image_encoder(clip_s_image.to(device)).image_embeds).unsqueeze(1)
#target_embed = image_encoder(clip_t_image.to(device)).image_embeds
output = pipe(
s_embed = s_img_embed,
s_pose = s_pose,
t_pose = t_pose,
num_images_per_prompt=1,
num_inference_steps = args.num_inference_steps,
generator = generator,
guidance_scale = args.guidance_scale,
)
# save features
feature = output[0].cpu().detach().numpy()
np.save('embed.npy', feature)
# computer scores
predict_embed = output[0]
#cosine_similarities = F.cosine_similarity(predict_embed, target_embed)
#sum_simm += cosine_similarities.item()
end_time =time.time()
print(end_time-start_time)
"""
avg_simm = sum_simm/number
with open (save_dir+'/a_results.txt', 'a') as ff:
ff.write('number is {}, guidance_scale is {}, all averge simm is :{} \n'.format(number, args.guidance_scale, avg_simm))
print('number is {}, guidance_scale is {}, all averge simm is :{}'.format(number, args.guidance_scale, avg_simm))
"""
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Simple example of a prior model of stage1 script.")
parser.add_argument("--pretrained_model_name_or_path",type=str,default="./kandinsky-2-2-prior",
help="Path to pretrained model or model identifier from huggingface.co/models.",)
parser.add_argument("--image_encoder_path",type=str,default="./OpenCLIP-ViT-H-14",
help="Path to pretrained model or model identifier from huggingface.co/models.",)
parser.add_argument("--img_path", type=str, default="./datasets/deepfashing/train_all_png/", help="image path", )
parser.add_argument("--pose_path", type=str, default="./datasets/deepfashing/normalized_pose_txt/", help="pose path", )
parser.add_argument("--json_path", type=str, default="./datasets/deepfashing/test_data.json", help="json path", )
parser.add_argument("--save_path", type=str, default="./save_data/stage1", help="save path", )
parser.add_argument("--guidance_scale",type=int,default=0,help="guidance_scale",)
parser.add_argument("--seed_number",type=int,default=42,help="seed number",)
parser.add_argument("--num_inference_steps",type=int,default=20,help="num_inference_steps",)
parser.add_argument("--img_width",type=int,default=512,help="image width",)
parser.add_argument("--img_height",type=int,default=512,help="image height",)
parser.add_argument("--weights_name",type=str,default="s1_512.pt",help="weights number",)
args = parser.parse_args()
print(args)
"""
# Set the number of GPUs.
num_devices = torch.cuda.device_count()
print("Using {} GPUs inference".format(num_devices))
# load data
test_data = json.load(open(args.json_path))
select_test_datas = test_data
print('The number of test data: {}'.format(len(select_test_datas)))
# Create a process pool
mp.set_start_method("spawn")
data_list = split_list_into_chunks(select_test_datas, num_devices)
processes = []
for rank in range(num_devices):
p = mp.Process(target=main, args=(args,rank, data_list[rank], ))
processes.append(p)
p.start()
for rank, p in enumerate(processes):
p.join()
"""
main(args)
|