File size: 6,513 Bytes
3366cca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import torch
from PIL import Image
from src.models.stage1_prior_transformer import Stage1_PriorTransformer
from src.pipelines.stage1_prior_pipeline import Stage1_PriorPipeline
import torch.nn.functional as F
from transformers import (
    CLIPVisionModelWithProjection,

    CLIPImageProcessor,
)
import argparse
import numpy as np

import torch.multiprocessing as mp
import json
import time


# Read a text file and convert the coordinates into a tensor
def read_coordinates_file(file_path):
    coordinates_list = []
    with open(file_path, 'r') as file:
        for line in file:
            x, y = map(float, line.strip().split())
            coordinates_list.extend([x, y])
    coordinates_tensor = torch.tensor(coordinates_list, dtype=torch.float32).view(1, -1)
    return coordinates_tensor

def split_list_into_chunks(lst, n):
    chunk_size = len(lst) // n
    chunks = [lst[i:i + chunk_size] for i in range(0, len(lst), chunk_size)]
    if len(chunks) > n:
        last_chunk = chunks.pop()
        chunks[-1].extend(last_chunk)
    return chunks

def main(args):

    device = torch.device("cuda")
    generator = torch.Generator(device=device).manual_seed(args.seed_number)

    # save path
    save_dir = "{}/guidancescale{}_seed{}_numsteps{}/".format(args.save_path,  args.guidance_scale, args.seed_number, args.num_inference_steps)
    if not os.path.exists(save_dir):
        os.makedirs(save_dir, exist_ok=True)

    # prepare data aug
    clip_image_processor = CLIPImageProcessor()

    # prepare model
    model_ckpt = args.weights_name


    pipe = Stage1_PriorPipeline.from_pretrained(args.pretrained_model_name_or_path).to(device)
    pipe.prior= Stage1_PriorTransformer.from_pretrained(args.pretrained_model_name_or_path, subfolder="prior", num_embeddings=2,embedding_dim=1024, low_cpu_mem_usage=False, ignore_mismatched_sizes=True).to(device)

    prior_dict = torch.load(model_ckpt, map_location="cpu")["module"]
    pipe.prior.load_state_dict(prior_dict)
    pipe.enable_xformers_memory_efficient_attention()

    image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.image_encoder_path).eval().to(device)


    print('====================== model load finish ===================')


    # start test
    start_time = time.time()

    #prepare data
    s_img_path = 'imgs/sm.png'
    t_img_path = 'imgs/target.png'

    s_pose_path = args.pose_path + select_test_data['source_image'].replace('.jpg', '.txt')
    t_pose_path = (args.pose_path + select_test_data["target_image"].replace(".jpg", ".txt"))

    # image_pair
    s_image = Image.open(s_img_path).convert("RGB").resize((args.img_width, args.img_height), Image.BICUBIC)
    #t_image = Image.open(t_img_path).convert("RGB").resize((args.img_width, args.img_height), Image.BICUBIC)

    s_pose = read_coordinates_file(s_pose_path).to(device).unsqueeze(1)
    t_pose = read_coordinates_file(t_pose_path).to(device).unsqueeze(1)





    clip_s_image = clip_image_processor(images=s_image, return_tensors="pt").pixel_values
    #clip_t_image = clip_image_processor(images=t_image, return_tensors="pt").pixel_values


    with torch.no_grad():
        s_img_embed = (image_encoder(clip_s_image.to(device)).image_embeds).unsqueeze(1)
        #target_embed = image_encoder(clip_t_image.to(device)).image_embeds




    output = pipe(
        s_embed = s_img_embed,
        s_pose = s_pose,
        t_pose = t_pose,
        num_images_per_prompt=1,
        num_inference_steps = args.num_inference_steps,
        generator = generator,
        guidance_scale = args.guidance_scale,
    )

    # save features
    feature = output[0].cpu().detach().numpy()
    np.save('embed.npy',  feature)

    # computer scores
    predict_embed = output[0]

    #cosine_similarities = F.cosine_similarity(predict_embed, target_embed)
    #sum_simm += cosine_similarities.item()

    end_time =time.time()
    print(end_time-start_time)

    """
    avg_simm = sum_simm/number
    with open (save_dir+'/a_results.txt', 'a') as ff:
        ff.write('number is {}, guidance_scale is {}, all averge simm is :{} \n'.format(number, args.guidance_scale, avg_simm))
    print('number is {}, guidance_scale is {}, all averge simm is :{}'.format(number, args.guidance_scale, avg_simm))
    """


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Simple example of a prior model of stage1 script.")
    parser.add_argument("--pretrained_model_name_or_path",type=str,default="./kandinsky-2-2-prior",
        help="Path to pretrained model or model identifier from huggingface.co/models.",)
    parser.add_argument("--image_encoder_path",type=str,default="./OpenCLIP-ViT-H-14",
        help="Path to pretrained model or model identifier from huggingface.co/models.",)
    parser.add_argument("--img_path", type=str, default="./datasets/deepfashing/train_all_png/", help="image path", )
    parser.add_argument("--pose_path", type=str, default="./datasets/deepfashing/normalized_pose_txt/", help="pose path", )
    parser.add_argument("--json_path", type=str, default="./datasets/deepfashing/test_data.json", help="json path", )
    parser.add_argument("--save_path", type=str, default="./save_data/stage1", help="save path", )
    parser.add_argument("--guidance_scale",type=int,default=0,help="guidance_scale",)
    parser.add_argument("--seed_number",type=int,default=42,help="seed number",)
    parser.add_argument("--num_inference_steps",type=int,default=20,help="num_inference_steps",)
    parser.add_argument("--img_width",type=int,default=512,help="image width",)
    parser.add_argument("--img_height",type=int,default=512,help="image height",)
    parser.add_argument("--weights_name",type=str,default="s1_512.pt",help="weights number",)


    args = parser.parse_args()
    print(args)
    
    """
    # Set the number of GPUs.
    num_devices = torch.cuda.device_count()

    print("Using {} GPUs inference".format(num_devices))

    # load data
    test_data = json.load(open(args.json_path))
    select_test_datas = test_data
    print('The number of test data: {}'.format(len(select_test_datas)))

    # Create a process pool
    mp.set_start_method("spawn")
    data_list = split_list_into_chunks(select_test_datas, num_devices)

    processes = []
    for rank in range(num_devices):
        p = mp.Process(target=main, args=(args,rank, data_list[rank], ))
        processes.append(p)
        p.start()


    for rank, p in enumerate(processes):
        p.join()
    """

    main(args)