Spaces:
Paused
Paused
File size: 11,814 Bytes
3366cca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import os
from PIL import Image
import numpy as np
from diffusers import UniPCMultistepScheduler
from src.models.stage2_inpaint_unet_2d_condition import Stage2_InapintUNet2DConditionModel
from src.pipelines.stage2_inpaint_pipeline import Stage2_InpaintDiffusionPipeline
import torch.nn.functional as F
from torchvision import transforms
from diffusers.models.controlnet import ControlNetConditioningEmbedding
from transformers import (
CLIPVisionModelWithProjection,
CLIPImageProcessor,
)
import argparse
from transformers import Dinov2Model
from typing import Any, Dict, List, Optional, Tuple, Union
from skimage.metrics import structural_similarity as compare_ssim
import torch
import torch.nn as nn
import torch.multiprocessing as mp
import json
import time
def split_list_into_chunks(lst, n):
chunk_size = len(lst) // n
chunks = [lst[i:i + chunk_size] for i in range(0, len(lst), chunk_size)]
if len(chunks) > n:
last_chunk = chunks.pop()
chunks[-1].extend(last_chunk)
return chunks
def image_grid(imgs, rows, cols):
assert len(imgs) == rows * cols
w, h = imgs[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
class ImageProjModel_p(torch.nn.Module):
"""SD model with image prompt"""
def __init__(self, in_dim, hidden_dim, out_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(in_dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.LayerNorm(hidden_dim),
nn.Linear(hidden_dim, out_dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
def inference(args):
device = torch.device("cuda")
generator = torch.Generator(device=device).manual_seed(args.seed_number)
# save path
save_dir = "{}/show_guidancescale{}_seed{}_numsteps{}/".format(args.save_path, args.guidance_scale, args.seed_number, args.num_inference_steps)
save_dir_metric = "{}/guidancescale{}_seed{}_numsteps{}/".format(args.save_path, args.guidance_scale, args.seed_number, args.num_inference_steps)
if not os.path.exists(save_dir):
os.makedirs(save_dir, exist_ok=True)
if not os.path.exists(save_dir_metric):
os.makedirs(save_dir_metric, exist_ok=True)
clip_image_processor = CLIPImageProcessor()
img_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
# model define
image_proj_model_p_dict = {}
pose_proj_dict = {}
unet_dict = {}
image_encoder_g = CLIPVisionModelWithProjection.from_pretrained(args.image_encoder_g_path).to(device).eval()
image_encoder_p = Dinov2Model.from_pretrained(args.image_encoder_p_path).to(device).eval()
image_proj_model_p = ImageProjModel_p(in_dim=1536, hidden_dim=768, out_dim=1024).to(device).eval()
pose_proj = ControlNetConditioningEmbedding(320, 3, (16, 32, 96, 256)).to(device).eval()
model_ckpt = args.weights_name
model_sd = torch.load(model_ckpt, map_location="cpu")["module"]
for k in model_sd.keys():
if k.startswith("pose_proj"):
pose_proj_dict[k.replace("pose_proj.", "")] = model_sd[k]
elif k.startswith("image_proj_model_p"):
image_proj_model_p_dict[k.replace("image_proj_model_p.", "")] = model_sd[k]
elif k.startswith("unet"):
unet_dict[k.replace("unet.", "")] = model_sd[k]
else:
print(k)
pose_proj.load_state_dict(pose_proj_dict)
image_proj_model_p.load_state_dict(image_proj_model_p_dict)
pipe = Stage2_InpaintDiffusionPipeline.from_pretrained(args.pretrained_model_name_or_path,torch_dtype=torch.float16).to(device)
pipe.unet= Stage2_InapintUNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet",
in_channels=9, class_embed_type="projection",
projection_class_embeddings_input_dim=1024,torch_dtype=torch.float16,
low_cpu_mem_usage=False, ignore_mismatched_sizes=True).to(device)
pipe.unet.load_state_dict(unet_dict)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_xformers_memory_efficient_attention()
#print('====================== json_data: {}, model load finish ==================='.format((args.json_path).split('/')[-1]))
data = {
'source_image': 'sm.png',
'target_image': 'pose2.png',
}
s_img_path = (args.img_path + data["source_image"].replace('.jpg', '.png'))
s_pose_path = args.pose_path + data['source_image'].replace('.jpg', '_pose.jpg')
t_img_path = (args.img_path + data["target_image"].replace('.jpg', '.png'))
t_pose_path = (args.pose_path + data["target_image"].replace(".jpg", "_pose.jpg"))
s_img = Image.open(s_img_path).convert("RGB").resize((args.img_width, args.img_height), Image.BICUBIC)
t_img = Image.open(t_img_path).convert("RGB").resize((args.img_width, args.img_height), Image.BICUBIC)
black_image = Image.new("RGB", s_img.size, (0, 0, 0))
s_img_t_mask = Image.new("RGB", (s_img.width * 2, s_img.height))
s_img_t_mask.paste(s_img, (0, 0))
s_img_t_mask.paste(black_image, (s_img.width, 0))
s_pose = Image.open(s_pose_path).convert("RGB").resize((args.img_width, args.img_height), Image.BICUBIC)
t_pose = Image.open(t_pose_path).convert("RGB").resize((args.img_width, args.img_height), Image.BICUBIC)
st_pose = Image.new("RGB", (s_pose.width * 2, s_pose.height))
st_pose.paste(s_pose, (0, 0))
st_pose.paste(t_pose, (s_pose.width, 0))
clip_processor_s_img = clip_image_processor(images=s_img, return_tensors="pt").pixel_values
s_img_f = image_encoder_p(clip_processor_s_img.to(device)).last_hidden_state
s_img_proj_f = image_proj_model_p(s_img_f) # s_img
vae_image = torch.unsqueeze(img_transform(s_img_t_mask), 0)
cond_st_pose = torch.unsqueeze(img_transform(st_pose), 0)
st_pose_f = pose_proj(cond_st_pose.to(device=device)) # t_pose
mode = 'train' # args.json_path.split('/')[-1].split('_')[0]
if mode == "train":
clip_processor_s_img = clip_image_processor(images=t_img, return_tensors="pt").pixel_values
pred_t_img_embed = (image_encoder_g(clip_processor_s_img.to(device)).image_embeds).unsqueeze(1)
#
elif mode == "test":
pred_t_img_embed = torch.tensor(np.load('embed.npy')).to(device)
pred_t_img_embed = pred_t_img_embed.unsqueeze(1)
else:
raise ValueError("Check the input JSON file path")
output = pipe(
height=args.img_height,
width=args.img_width*2,
guidance_rescale=0.0,
vae_image=vae_image,
s_img_proj_f=s_img_proj_f,
st_pose_f=st_pose_f,
pred_t_img_embed = pred_t_img_embed,
num_images_per_prompt=4,
guidance_scale=args.guidance_scale,
generator=generator,
num_inference_steps=args.num_inference_steps,
)
vis_st_pose = Image.new("RGB", (args.img_width*2, args.img_height))
vis_st_pose.paste(Image.open(s_pose_path).convert("RGB").resize((args.img_width, args.img_height), Image.BICUBIC), (0, 0))
vis_st_pose.paste(Image.open(t_pose_path).convert("RGB").resize((args.img_width, args.img_height), Image.BICUBIC), (args.img_width, 0))
vis_st_image = Image.new("RGB", (args.img_width*2, args.img_height))
vis_st_image.paste(Image.open(s_img_path).convert("RGB").resize((args.img_width, args.img_height), Image.BICUBIC), (0, 0))
vis_st_image.paste(Image.open(t_img_path).convert("RGB").resize((args.img_width, args.img_height), Image.BICUBIC), (args.img_width, 0))
if args.calculate_metrics:
ssim_values = []
for gen_img in output.images:
gen_img = gen_img.crop((args.img_width,0, args.img_width*2,args.img_height))
ssim_values.append(compare_ssim(np.array(t_img)*255.0, np.array(gen_img)*255.0,
gaussian_weights=True, sigma=1.2,
use_sample_covariance=False, multichannel=True, channel_axis=2,
data_range=(np.array(gen_img)*255.0).max() - (np.array(gen_img)*255.0).min()
))
max_value = max(ssim_values)
all_ssim.append(max_value)
max_index = ssim_values.index(max_value)
grid_metric = output.images[max_index].crop((args.img_width,0, args.img_width*2,args.img_height))
grid_metric.save(save_dir_metric + s_img_path.split("/")[-1].replace(".png", "") + "_to_" + t_img_path.split("/")[-1])
else:
output.images.insert(0, vis_st_pose)
output.images.insert(0, vis_st_image)
grid = image_grid(output.images, 2, 3)
grid.save('coarse.png')
if args.calculate_metrics:
print(sum(all_ssim)/ len(all_ssim))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Simple example of an inpaint model of stage2 script.")
parser.add_argument("--pretrained_model_name_or_path", type=str,
default="stabilityai/stable-diffusion-2-1-base",
help="Path to pretrained model or model identifier from huggingface.co/models.", )
parser.add_argument("--image_encoder_g_path",type=str,default="laion/CLIP-ViT-H-14-laion2B-s32B-b79K", # openai/clip-vit-base-patch32
help="Path to pretrained model or model identifier from huggingface.co/models.",)
parser.add_argument("--image_encoder_p_path",type=str,default="facebook/dinov2-giant",
help="Path to pretrained model or model identifier from huggingface.co/models.",)
parser.add_argument("--img_path", type=str,default="imgs/", help="image path", )
parser.add_argument("--pose_path", type=str,default="imgs/",help="pose path", )
parser.add_argument("--json_path", type=str,default="./datasets/deepfashing/test_data.json",help="json path", )
parser.add_argument("--target_embed_path", type=str,default="./logs/view_stage1/512_512/",help="t_img_embed path", )
parser.add_argument("--save_path", type=str, default="./save_data/stage2", help="save path", ) # ./logs/view_stage2/512_512
parser.add_argument("--guidance_scale",type=int,default=2.0,help="guidance_scale",)
parser.add_argument("--seed_number",type=int,default=42,help="seed number",)
parser.add_argument("--num_inference_steps",type=int,default=20,help="num_inference_steps",)
parser.add_argument("--img_width",type=int,default=512,help="image width",)
parser.add_argument("--img_height",type=int,default=512,help="image height",)
parser.add_argument("--calculate_metrics", action='store_true', help="caculate ssim", )
parser.add_argument("--weights_name", type=str, default="s2_512.pt",help="weights number", )
args = parser.parse_args()
print(args)
inference(args)
"""
num_devices = torch.cuda.device_count()
print("using {} num_processes inference".format(num_devices))
test_data = json.load(open(args.json_path))
select_test_datas = test_data
print(len(select_test_datas))
mp.set_start_method("spawn")
data_list = split_list_into_chunks(select_test_datas, num_devices)
processes = []
for rank in range(num_devices):
p = mp.Process(target=inference, args=(args, rank, data_list[rank] ))
processes.append(p)
p.start()
for rank, p in enumerate(processes):
p.join()
"""
|