File size: 5,190 Bytes
3366cca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
import json
import cv2
import torch
from torch import nn
from PIL import Image
import numpy as np
from diffusers import UniPCMultistepScheduler
import torch.nn.functional as F
from torchvision import transforms
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel
from transformers import CLIPImageProcessor
from src.pipelines.stage3_refined_pipeline import Stage3_RefinedPipeline
import argparse
from transformers import Dinov2Model
from typing import Any, Dict, List, Optional, Tuple, Union
from skimage.metrics import structural_similarity as compare_ssim
import torch
import torch.nn as nn
import torch.multiprocessing as mp
import json
import time
def split_list_into_chunks(lst, n):
    chunk_size = len(lst) // n
    chunks = [lst[i:i + chunk_size] for i in range(0, len(lst), chunk_size)]
    if len(chunks) > n:
        last_chunk = chunks.pop()
        chunks[-1].extend(last_chunk)
    return chunks

def image_grid(imgs, rows, cols):
    assert len(imgs) == rows * cols

    w, h = imgs[0].size
    grid = Image.new("RGB", size=(cols * w, rows * h))
    grid_w, grid_h = grid.size

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i % cols * w, i // cols * h))
    return grid

def zero_module(module):
    for p in module.parameters():
        nn.init.zeros_(p)
    return module





class ImageProjModel_p(torch.nn.Module):
    """SD model with image prompt"""

    def __init__(self, in_dim, hidden_dim, out_dim, dropout = 0.):
        super().__init__()

        self.net = nn.Sequential(
            nn.Linear(in_dim, hidden_dim),
            nn.GELU(),
            nn.Dropout(dropout),
            nn.LayerNorm(hidden_dim),
            nn.Linear(hidden_dim, out_dim),
            nn.Dropout(dropout)
        )

    def forward(self, x):  # b, 257,1280
        return self.net(x)




def inference():

    device = "cuda"
    generator = torch.Generator(device=device).manual_seed(42)
    
    clip_image_processor = CLIPImageProcessor()

    img_transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize([0.5], [0.5]),
    ])


    # model define
    image_proj_model_p_dict = {}
    unet_dict = {}

    image_encoder_p = Dinov2Model.from_pretrained('facebook/dinov2-giant').to(device).eval()

    image_proj_model_p = ImageProjModel_p(in_dim=1536, hidden_dim=768, out_dim=1024).to(device).eval()

    #model_ckpt = "{}/mp_rank_00_model_states.pt".format('{save_ckpt}')
    model_ckpt = "s3_512.pt"
    with torch.no_grad():
        model_sd = torch.load(model_ckpt)["module"]

    for k in model_sd.keys():
        if k.startswith("image_proj_model_p"):
            image_proj_model_p_dict[k.replace("image_proj_model_p.", "")] = model_sd[k]

        elif k.startswith("unet"):
            unet_dict[k.replace("unet.", "")] = model_sd[k]

        else:
            print(k)


    image_proj_model_p.load_state_dict(image_proj_model_p_dict)

    pipe = Stage3_RefinedPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base",torch_dtype=torch.float16).to(device)

    pipe.unet= UNet2DConditionModel.from_pretrained("stabilityai/stable-diffusion-2-1-base", subfolder="unet",
                                           in_channels=8, low_cpu_mem_usage=False, ignore_mismatched_sizes=True).to(device)

    pipe.unet.load_state_dict(unet_dict)

    pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
    pipe.enable_xformers_memory_efficient_attention()
    




    all_ssim = []

    s_img_path = 'imgs/sm.png'
    #t_img_path = 'imgs/expected.png'
    gen_t_img_path = 'imgs/coarse.png'

    s_img = Image.open(s_img_path).convert("RGB").resize((512,512), Image.BICUBIC)
    #t_img = Image.open(t_img_path).convert("RGB").resize((512,512), Image.BICUBIC)
    gen_t_img = Image.open(gen_t_img_path).convert("RGB").resize((512,512), Image.BICUBIC)



    clip_processor_s_img = clip_image_processor(images=s_img, return_tensors="pt").pixel_values
    s_img_f = image_encoder_p(clip_processor_s_img.to(device)).last_hidden_state
    s_img_proj_f = image_proj_model_p(s_img_f)  # s_img


    vae_gen_t_image = torch.unsqueeze(img_transform(gen_t_img), 0)





    output = pipe(
            height=512,
            width=512,
            guidance_rescale=2.0,
            vae_gen_t_image=vae_gen_t_image,
            s_img_proj_f=s_img_proj_f,
            num_images_per_prompt=4,
            guidance_scale=1.0,
            generator=generator,
            num_inference_steps=20,
        )
    
    for i, r in enumerate(output.images):
        r.save('out'+str(i)+'.png')
    
    save_output = []
    result = output.images[0].crop((512, 0, 512 * 2, 512))
    save_output.append(result.resize((352, 512), Image.BICUBIC))
    save_output.insert(0, gen_t_img.resize((352, 512), Image.BICUBIC))
    save_output.insert(0, s_img.resize((352, 512), Image.BICUBIC))
    grid = image_grid(save_output, 1, 3)
    grid.save("out.png")
    



if __name__ == "__main__":

    inference()