File size: 10,786 Bytes
3366cca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import glob
import os
import torch
from torch import nn, optim
import torch.nn.functional as F
import torchvision.transforms.functional as FF
from PIL import Image
import numpy as np
from diffusers import UniPCMultistepScheduler
from src.models.stage2_inpaint_unet_2d_condition import Stage2_InapintUNet2DConditionModel
from accelerate import Accelerator

from torchvision import transforms
from diffusers.models.controlnet import ControlNetConditioningEmbedding
from transformers import CLIPImageProcessor
from transformers import Dinov2Model
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel,ControlNetModel,DDIMScheduler
from src.pipelines.PCDMs_pipeline import PCDMsPipeline
from single_extract_pose import inference_pose


device = "cuda"
pretrained_model_name_or_path ="stabilityai/stable-diffusion-2-1-base"
image_encoder_path = "facebook/dinov2-giant"
model_ckpt_path = "./pcdms_ckpt.pt"   # ckpt path

num_samples = 1
image_size = (512, 512)
s_img_path = 'imgs/sm.png' # input image 1
target_pose_img = 'imgs/pose.png' # input image 2


def image_grid(imgs, rows, cols):
    assert len(imgs) == rows * cols
    w, h = imgs[0].size
    print(w, h)
    grid = Image.new("RGB", size=(cols * w, rows * h))
    grid_w, grid_h = grid.size

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i % cols * w, i // cols * h))
    return grid

def load_mydict(model_ckpt_path):
    model_sd = torch.load(model_ckpt_path, map_location="cpu")["module"]

    image_proj_model_dict = {}
    pose_proj_dict = {}
    unet_dict = {}
    for k in model_sd.keys():
        if k.startswith("pose_proj"):
            pose_proj_dict[k.replace("pose_proj.", "")] = model_sd[k]

        elif k.startswith("image_proj_model"):
            image_proj_model_dict[k.replace("image_proj_model.", "")] = model_sd[k]


        elif k.startswith("unet"):
            unet_dict[k.replace("unet.", "")] = model_sd[k]
        else:
            print(k)
    return image_proj_model_dict, pose_proj_dict, unet_dict

class ImageProjModel(torch.nn.Module):
    """SD model with image prompt"""
    def __init__(self, in_dim, hidden_dim, out_dim, dropout = 0.):
        super().__init__()

        self.net = nn.Sequential(
            nn.Linear(in_dim, hidden_dim),
            nn.GELU(),
            nn.Dropout(dropout),
            nn.LayerNorm(hidden_dim),
            nn.Linear(hidden_dim, out_dim),
            nn.Dropout(dropout)
        )

    def forward(self, x):  
        return self.net(x)



clip_image_processor = CLIPImageProcessor()
img_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize([0.5], [0.5]),
])

generator = torch.Generator(device=device).manual_seed(42)
unet = Stage2_InapintUNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16,subfolder="unet",in_channels=9, low_cpu_mem_usage=False, ignore_mismatched_sizes=True).to(device)
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path,subfolder="vae").to(device, dtype=torch.float16)
image_encoder = Dinov2Model.from_pretrained(image_encoder_path).to(device, dtype=torch.float16)
noise_scheduler = DDIMScheduler(
    num_train_timesteps=1000,
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    clip_sample=False,
    set_alpha_to_one=False,
    steps_offset=1,
)

#noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler")

print('====================== model load finish ===================')



class SDModel(torch.nn.Module):
    """SD model with image prompt"""
    def __init__(self, unet) -> None:
        super().__init__()
        self.unet = unet
        
        self.image_proj_model = ImageProjModel(in_dim=1536, hidden_dim=768, out_dim=1024).to(device).to(dtype=torch.float16)
        self.pose_proj = ControlNetConditioningEmbedding(
            conditioning_embedding_channels=320,
            block_out_channels=(16, 32, 96, 256),
            conditioning_channels=3).to(device).to(dtype=torch.float16)
        
        # load weight
        image_proj_model_dict, pose_proj_dict, unet_dict = load_mydict(model_ckpt_path)
        self.image_proj_model.load_state_dict(image_proj_model_dict)
        self.pose_proj.load_state_dict(pose_proj_dict)
        unet.load_state_dict(unet_dict)


    def forward(self, s_img_path, t_pose_path, t_img_path, epoch):

        pipe = PCDMsPipeline.from_pretrained(pretrained_model_name_or_path, unet=self.unet,  torch_dtype=torch.float16, scheduler=noise_scheduler,feature_extractor=None,safety_checker=None).to(device)
        
        t_pose = inference_pose(t_img_path, image_size=(image_size[1], image_size[0])).convert("RGB").resize(image_size, Image.BICUBIC)
        target_img = Image.open(t_img_path).convert("RGB").resize(image_size, Image.BICUBIC)
        
        
        s_img = Image.open(s_img_path).convert("RGB").resize(image_size, Image.BICUBIC)
        black_image = Image.new("RGB", s_img.size, (0, 0, 0)).resize(image_size, Image.BICUBIC)

        s_img_t_mask = Image.new("RGB", (s_img.width * 2, s_img.height))
        s_img_t_mask.paste(s_img, (0, 0))
        s_img_t_mask.paste(black_image, (s_img.width, 0))

        s_pose = inference_pose(s_img_path, image_size=(image_size[1], image_size[0])).resize(image_size, Image.BICUBIC)
        print('source image width: {}, height: {}'.format(s_pose.width, s_pose.height))
        #t_pose = Image.open(t_pose_path).convert("RGB").resize((image_size), Image.BICUBIC)

        st_pose = Image.new("RGB", (s_pose.width * 2, s_pose.height))
        st_pose.paste(s_pose, (0, 0))
        st_pose.paste(t_pose, (s_pose.width, 0))


        clip_s_img = clip_image_processor(images=s_img, return_tensors="pt").pixel_values
        vae_image = torch.unsqueeze(img_transform(s_img_t_mask), 0)
        cond_st_pose = torch.unsqueeze(img_transform(st_pose), 0)

        mask1 = torch.ones((1, 1, int(image_size[0] / 8), int(image_size[1] / 8))).to(device, dtype=torch.float16)
        mask0 = torch.zeros((1, 1, int(image_size[0] / 8), int(image_size[1] / 8))).to(device, dtype=torch.float16)
        mask = torch.cat([mask1, mask0], dim=3)

        st_img = (Image.new("RGB", (image_size[0] * 2, image_size[1])))
        st_img.paste(s_img, (0, 0))
        st_img.paste(target_img, (image_size[0], 0))
        st_img.save('tar.png')
        st_img = torch.unsqueeze(img_transform(st_img), 0)
        
        

        with torch.inference_mode():
            cond_pose = self.pose_proj(cond_st_pose.to(dtype=torch.float16, device=device))
            simg_mask_latents = pipe.vae.encode(vae_image.to(device, dtype=torch.float16)).latent_dist.sample()
            simg_mask_latents = simg_mask_latents * 0.18215

            images_embeds = image_encoder(clip_s_img.to(device, dtype=torch.float16)).last_hidden_state
            image_prompt_embeds = self.image_proj_model(images_embeds)
            uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(images_embeds))
            
            latents = pipe.vae.encode(st_img.to(device, dtype=torch.float16)).latent_dist.sample()
            latents = latents * pipe.vae.config.scaling_factor
            noise = torch.randn_like(latents)
            timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (1,),device=latents.device, )
            timesteps = timesteps.long()
            target = noise_scheduler.get_velocity(latents, noise, timesteps)

        bs_embed, seq_len, _ = image_prompt_embeds.shape
        image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
        image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
        uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
        uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
        

        output, model_pred = pipe(
            simg_mask_latents= simg_mask_latents,
            mask = mask,
            cond_pose = cond_pose,
            prompt_embeds=image_prompt_embeds,
            negative_prompt_embeds=uncond_image_prompt_embeds,
            height=image_size[1],
            width=image_size[0]*2,
            num_images_per_prompt=num_samples,
            guidance_scale=2.0,
            generator=generator,
            num_inference_steps=50,
        )
        output = output.images[-1]
        output.save('out'+str(epoch)+'.png')
        
        """

        with torch.inference_mode():

            output = torch.unsqueeze(img_transform(output), 0)

            latents = pipe.vae.encode(output.to(device, dtype=torch.float16)).latent_dist.sample()

            latents = latents * pipe.vae.config.scaling_factor

            noise = torch.randn_like(latents)

            timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (1,),device=latents.device, )

            timesteps = timesteps.long()

            model_pred = noise_scheduler.get_velocity(latents, noise, timesteps)

        """
        
        return model_pred, target



# Training setup
sd_model = SDModel(unet)
sd_model.train()
optimizer = optim.AdamW(sd_model.parameters(), lr=1e-5)
loss_fn = nn.MSELoss()


accelerator = Accelerator()
sd_model, optimizer = accelerator.prepare(sd_model, optimizer)


prev = sd_model.unet.state_dict()

# Fine-tuning loop
num_epochs = 5
for epoch in range(num_epochs):
    for s_img_path, t_pose_path, t_img_path in zip(['imgs/sm.png'], ['imgs/p1.png'], ['imgs/target.png']):
        with accelerator.accumulate(sd_model):
            optimizer.zero_grad()
            
            model_pred, target = sd_model(s_img_path, t_pose_path, t_img_path, epoch)
            
            #loss = loss_fn(torch.unsqueeze(img_transform(output), 0), torch.unsqueeze(img_transform(target_img),0))
            loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
            loss.requires_grad = True
            
            accelerator.backward(loss)
            optimizer.step()
            
            set1 = set(prev.items())
            set2 = set(sd_model.unet.state_dict().items())
            dif = set1 ^ set2
            print(len(dif))
            prev = sd_model.unet.state_dict()
    
    print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}")
        



# Save fine-tuned model
torch.save(sd_model, "fine_tuned_pcdms.pt")
#sd_model.save_checkpoint("outputs", "0", {})
print("Fine-tuning completed. Model saved.")