Spaces:
Paused
Paused
File size: 19,450 Bytes
3366cca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
import logging
import math
import os
from typing import Any, Dict, List, Optional, Tuple, Union
from diffusers.models.controlnet import ControlNetConditioningEmbedding
import torch
from torch import nn
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from tqdm.auto import tqdm
from src.configs.stage2_config import args
import diffusers
from diffusers import (
AutoencoderKL,
DDPMScheduler,
)
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version, is_wandb_available
from src.dataset.stage2_dataset import InpaintDataset, InpaintCollate_fn
from transformers import CLIPVisionModelWithProjection
from transformers import Dinov2Model
from src.models.stage2_inpaint_unet_2d_condition import Stage2_InapintUNet2DConditionModel
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.18.0.dev0")
logger = get_logger(__name__)
class ImageProjModel_p(torch.nn.Module):
"""SD model with image prompt"""
def __init__(self, in_dim, hidden_dim, out_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(in_dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.LayerNorm(hidden_dim),
nn.Linear(hidden_dim, out_dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class ImageProjModel_g(torch.nn.Module):
"""SD model with image prompt"""
def __init__(self, in_dim, hidden_dim, out_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(in_dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.LayerNorm(hidden_dim),
nn.Linear(hidden_dim, out_dim),
nn.Dropout(dropout)
)
def forward(self, x): # b, 257,1280
return self.net(x)
class SDModel(torch.nn.Module):
"""SD model with image prompt"""
def __init__(self, unet) -> None:
super().__init__()
self.image_proj_model_p = ImageProjModel_p(in_dim=1536, hidden_dim=768, out_dim=1024)
self.unet = unet
self.pose_proj = ControlNetConditioningEmbedding(
conditioning_embedding_channels=320,
block_out_channels=(16, 32, 96, 256),
conditioning_channels=3)
def forward(self, noisy_latents, timesteps, simg_f_p, timg_f_g, pose_f):
extra_image_embeddings_p = self.image_proj_model_p(simg_f_p)
extra_image_embeddings_g = timg_f_g
print(extra_image_embeddings_p.size())
print(extra_image_embeddings_g.size())
encoder_image_hidden_states = torch.cat([extra_image_embeddings_p ,extra_image_embeddings_g], dim=1)
pose_cond = self.pose_proj(pose_f)
pred_noise = self.unet(noisy_latents, timesteps, class_labels=timg_f_g, encoder_hidden_states=encoder_image_hidden_states,my_pose_cond=pose_cond).sample
return pred_noise
def load_training_checkpoint2(model, load_dir, tag=None, **kwargs):
"""Utility function for checkpointing model + optimizer dictionaries
The main purpose for this is to be able to resume training from that instant again
"""
"""
checkpoint_state_dict= torch.load(load_dir, map_location="cpu")
print(checkpoint_state_dict.keys())
epoch = 0
last_global_step = 0
epoch = checkpoint_state_dict["epoch"]
last_global_step = checkpoint_state_dict["last_global_step"]
# TODO optimizer lr, and loss state
weight_dict = checkpoint_state_dict["module"]
new_weight_dict = {f"module.{key}": value for key, value in weight_dict.items()}
model.load_state_dict(new_weight_dict)
del checkpoint_state_dict
return model, epoch, last_global_step
"""
image_proj_model_p_dict = {}
pose_proj_dict = {}
unet_dict = {}
model_sd = torch.load(load_dir, map_location="cpu")["module"]
for k in model_sd.keys():
if k.startswith("pose_proj"):
pose_proj_dict[k.replace("pose_proj.", "")] = model_sd[k]
elif k.startswith("image_proj_model_p"):
image_proj_model_p_dict[k.replace("image_proj_model_p.", "")] = model_sd[k]
elif k.startswith("unet"):
unet_dict[k.replace("unet.", "")] = model_sd[k]
else:
print(k)
model.pose_proj.load_state_dict(pose_proj_dict)
model.image_proj_model_p.load_state_dict(image_proj_model_p_dict)
model.unet.load_state_dict(unet_dict)
return model, 0, 0
def load_training_checkpoint(model, load_dir, tag=None, **kwargs):
model_sd = torch.load(load_dir, map_location="cpu")["module"]
image_proj_model_dict = {}
pose_proj_dict = {}
unet_dict = {}
for k in model_sd.keys():
if k.startswith("pose_proj"):
pose_proj_dict[k.replace("pose_proj.", "")] = model_sd[k]
elif k.startswith("image_proj_model"):
image_proj_model_dict[k.replace("image_proj_model.", "")] = model_sd[k]
elif k.startswith("unet"):
unet_dict[k.replace("unet.", "")] = model_sd[k]
else:
print(k)
model.pose_proj.load_state_dict(pose_proj_dict)
model.image_proj_model_p.load_state_dict(image_proj_model_dict)
model.unet.load_state_dict(unet_dict)
return model, 0, 0
def checkpoint_model(checkpoint_folder, ckpt_id, model, epoch, last_global_step, **kwargs):
"""Utility function for checkpointing model + optimizer dictionaries
The main purpose for this is to be able to resume training from that instant again
"""
checkpoint_state_dict = {
"epoch": epoch,
"last_global_step": last_global_step,
}
# Add extra kwargs too
checkpoint_state_dict.update(kwargs)
success = model.save_checkpoint(checkpoint_folder, ckpt_id, checkpoint_state_dict)
status_msg = f"checkpointing: checkpoint_folder={checkpoint_folder}, ckpt_id={ckpt_id}"
if success:
logging.info(f"Success {status_msg}")
else:
logging.warning(f"Failure {status_msg}")
return
def main():
logging_dir = 'outputs/logging'
accelerator = Accelerator(
log_with=args.report_to,
project_dir=logging_dir,
mixed_precision=args.mixed_precision,
gradient_accumulation_steps=args.gradient_accumulation_steps
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO, )
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
set_seed(42)
# Handle the repository creation
if accelerator.is_main_process:
os.makedirs('outputs', exist_ok=True)
# Load scheduler
noise_scheduler = DDPMScheduler.from_pretrained("stabilityai/stable-diffusion-2-1-base", subfolder="scheduler")
# Load model
image_encoder_p = Dinov2Model.from_pretrained('facebook/dinov2-giant')
image_encoder_g = CLIPVisionModelWithProjection.from_pretrained('laion/CLIP-ViT-H-14-laion2B-s32B-b79K')#("openai/clip-vit-base-patch32")
vae = AutoencoderKL.from_pretrained("stabilityai/stable-diffusion-2-1-base", subfolder="vae")
unet = Stage2_InapintUNet2DConditionModel.from_pretrained("stabilityai/stable-diffusion-2-1-base", torch_dtype=torch.float16,subfolder="unet",in_channels=9, low_cpu_mem_usage=False, ignore_mismatched_sizes=True)
"""
unet = Stage2_InapintUNet2DConditionModel.from_pretrained("stabilityai/stable-diffusion-2-1-base", subfolder="unet",
in_channels=9, class_embed_type="projection" ,projection_class_embeddings_input_dim=1024,
low_cpu_mem_usage=False, ignore_mismatched_sizes=True)
"""
image_encoder_p.requires_grad_(False)
image_encoder_g.requires_grad_(False)
vae.requires_grad_(False)
sd_model = SDModel(unet=unet)
sd_model.train()
if args.gradient_checkpointing:
sd_model.enable_gradient_checkpointing()
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
learning_rate = 1e-4
train_batch_size = 1
# Optimizer creation
params_to_optimize = sd_model.parameters()
optimizer = torch.optim.AdamW(
params_to_optimize,
lr=learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
dataset = InpaintDataset(
[{
"source_image": "sm.png",
"target_image": "target.png",
}],
'imgs/',
size=(args.img_width, args.img_height), # w h
imgp_drop_rate=0.1,
imgg_drop_rate=0.1,
)
"""
dataset = InpaintDataset(
args.json_path,
args.image_root_path,
size=(args.img_width, args.img_height), # w h
imgp_drop_rate=0.1,
imgg_drop_rate=0.1,
)
"""
train_sampler = torch.utils.data.distributed.DistributedSampler(
dataset, num_replicas=accelerator.num_processes, rank=accelerator.process_index, shuffle=True)
train_dataloader = torch.utils.data.DataLoader(
dataset,
sampler=train_sampler,
collate_fn=InpaintCollate_fn,
batch_size=train_batch_size,
num_workers=2,)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
num_cycles=args.lr_num_cycles,
power=args.lr_power,
)
# Prepare everything with our `accelerator`.
sd_model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(sd_model, optimizer, train_dataloader, lr_scheduler)
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
"""
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
"""
# Move vae, unet and text_encoder to device and cast to weight_dtype
vae.to(accelerator.device, dtype=weight_dtype)
unet.to(accelerator.device, dtype=weight_dtype)
image_encoder_p.to(accelerator.device, dtype=weight_dtype)
image_encoder_g.to(accelerator.device, dtype=weight_dtype)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Train!
total_batch_size = (
train_batch_size
* accelerator.num_processes
* args.gradient_accumulation_steps
)
logger.info("***** Running training *****")
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {train_batch_size}")
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
)
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
if args.resume_from_checkpoint:
# New Code #
# Loads the DeepSpeed checkpoint from the specified path
prior_model, last_epoch, last_global_step = load_training_checkpoint(
sd_model,
args.resume_from_checkpoint,
**{"load_optimizer_states": True, "load_lr_scheduler_states": True},
)
accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}, global step: {last_global_step}")
starting_epoch = last_epoch
global_steps = last_global_step
sd_model = sd_model
else:
global_steps = 0
starting_epoch = 0
sd_model = sd_model
progress_bar = tqdm(range(global_steps, args.max_train_steps), initial=global_steps, desc="Steps",
# Only show the progress bar once on each machine.
disable=not accelerator.is_local_main_process, )
bsz = train_batch_size
for epoch in range(starting_epoch, args.num_train_epochs):
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(sd_model):
with torch.no_grad():
# Convert images to latent space
latents = vae.encode(batch["source_target_image"].to(dtype=weight_dtype)).latent_dist.sample()
latents = latents * vae.config.scaling_factor
# Get the masked image latents
masked_latents = vae.encode(batch["vae_source_mask_image"].to(dtype=weight_dtype)).latent_dist.sample()
masked_latents = masked_latents * vae.config.scaling_factor
# mask
mask1 = torch.ones((bsz, 1, int(args.img_height / 8), int(args.img_width / 8))).to(accelerator.device, dtype=weight_dtype)
mask0 = torch.zeros((bsz, 1, int(args.img_height / 8), int(args.img_width / 8))).to(accelerator.device, dtype=weight_dtype)
mask = torch.cat([mask1, mask0], dim=3)
# Get the image embedding for conditioning
cond_image_feature_p = image_encoder_p(batch["source_image"].to(accelerator.device, dtype=weight_dtype))
cond_image_feature_p = (cond_image_feature_p.last_hidden_state)
cond_image_feature_g = image_encoder_g(batch["target_image"].to(accelerator.device, dtype=weight_dtype), ).image_embeds
cond_image_feature_g =cond_image_feature_g.unsqueeze(1)
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
if args.noise_offset:
# https://www.crosslabs.org//blog/diffusion-with-offset-noise
noise += args.noise_offset * torch.randn(
(latents.shape[0], latents.shape[1], 1, 1), device=latents.device
)
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (train_batch_size,),device=latents.device, )
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
noisy_latents = torch.cat([noisy_latents, mask, masked_latents], dim=1)
# Get the text embedding for conditioning
cond_pose = batch["source_target_pose"].to(dtype=weight_dtype)
print(noisy_latents.size())
print(cond_image_feature_p.size())
print(cond_image_feature_g.size())
print(cond_pose.size())
# Predict the noise residual
model_pred = sd_model(noisy_latents, timesteps, cond_image_feature_p,cond_image_feature_g, cond_pose, )
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(
f"Unknown prediction type {noise_scheduler.config.prediction_type}"
)
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = sd_model.parameters()
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=args.set_grads_to_none)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_steps += 1
if global_steps % args.checkpointing_steps == 0:
"""
checkpoint_model(
args.output_dir, global_steps, sd_model, epoch, global_steps
)
"""
checkpoint_state_dict = {
"epoch": epoch,
"module": sd_model.state_dict(),
}
print(list(sd_model.state_dict().keys())[:20])
torch.save(checkpoint_state_dict, "fine_tuned_pcdms.pt")
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
print(logs)
progress_bar.set_postfix(**logs)
if global_steps >= args.max_train_steps:
break
# Create the pipeline using the trained modules and save it.
accelerator.wait_for_everyone()
accelerator.end_training()
if __name__ == "__main__":
main()
"""
python train2.py \
--pretrained_model_name_or_path="stabilityai/stable-diffusion-2-1-base" \
--output_dir="out/" \
--img_height=512 \
--img_width=512 \
--learning_rate=1e-4 \
--train_batch_size=8 \
--max_train_steps=1000000 \
--mixed_precision="fp16" \
--checkpointing_steps=1 \
--noise_offset=0.1 \
--lr_warmup_steps 5000 \
--seed 42 \
--resume_from_checkpoint s2_512.pt
""" |